Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:07:26.412Z Has data issue: false hasContentIssue false

The Jovian Rings

Published online by Cambridge University Press:  03 November 2010

Wing-Huen Ip*
Affiliation:
Institute of Astronomy, National Central University, Taiwan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparison of the Jovian and Saturnian rings is made by reviewing the recent advances in planetary spacecraft exploration and theoretical study. Two main issues are addressed, namely, the different structures of these two planetary ring systems and the water ice composition of the Saturnian rings. It is suggested that answers might be found by invoking tidal capture of Trans-Neptunian Objects with highly differentiated structures even though catastrophic breakup of pre-existing satellites in the ring regions remains a real possibility. Erosion mechanisms such as meteoroid impact, photo-sputtering, orbital instability of charged dust particles and thermal evaporation acting at different time scales could lead to the preservation of the Saturnian ring system but not the Jovian ring system of large mass originally.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Anderson, J. D., Johnson, T. V., Schubert, G., Asmar, S., Jacobson, R. A., Johnston, D., Lau, E. L., Lewis, G., Moore, W. B., Taylor, A., Thomas, P. C., & Weinwurn, G. 2005, Science, 308, 1291CrossRefGoogle Scholar
Ayliffe, B. A. & Bate, M. R. 2009, Mon. Not. R. Astron. Soc, 397, 657CrossRefGoogle Scholar
Burns, J. A., Simonelli, D. P., Showalter, M. R., Hamilton, D. P., Proco, C. C., Throop, H., & Esposito, L. W. 2004, in Jupiter, Bagenal, F., Dowling, T., & McKinnon, W. (eds.), (Cambridge University Press), p.241Google Scholar
Dollfus, A. 1979a, Icarus, 37, 404CrossRefGoogle Scholar
Dollfus, A. 1979b, Icarus, 40, 171CrossRefGoogle Scholar
Elliot, J. L., Dunham, E. W., & Mink, D. J. 1977, Nature, 267, 328CrossRefGoogle Scholar
Farmer, A. J. & Goldreich, P. 2007, Icarus, 188, 108CrossRefGoogle Scholar
Hubbard, W. B., Brahic, A., Sicardy, B., Elicer, L. R., Roques, F., & Vilas, F. 1986, Nature, 319, 636CrossRefGoogle Scholar
Ip, W.-H. 1983, J. Geophys. Res., 88, 819CrossRefGoogle Scholar
Ip, W.-H. 1984, Icarus, 60, 547CrossRefGoogle Scholar
Ip, W.-H. 1988, A&A, 199, 340Google Scholar
Ip, W.-H. 2005, Geophys. Res. Lett., 32, Issue 13, CiteID L 13204CrossRefGoogle Scholar
Johnson, R. E. & Quickenden, T. I. 1997, J. Geophys. Res., 102, E5, 10985CrossRefGoogle Scholar
Johnson, R. E., Luhmann, J. G., Tokar, R. C., Bouhram, M., Berthelier, J., Sittler, E. C., Cooper, J. F., Hill, T. W., Michael, M., Liu, J., Crary, F. J., & Young, D. T. 2006, Icarus, 180, 393CrossRefGoogle Scholar
Jurac, S. & Richardson, J. D. 2007, Geophys. Res. Lett., 34, Issue 8, CitreID L08102CrossRefGoogle Scholar
Manfroid, M. S., Haefner, R., & Bouchet, P. 1986, A&A, 157, L3Google Scholar
Morfill, G. E., Fechtig, H., Gruen, E., & Goertz, C. K. 1983, Icarus, 55, 439CrossRefGoogle Scholar
Richardson, J. E. & Jurac, S. 2004, Geophys. Res. Lett., 31, Issue 24, CiteIDL 24803Google Scholar
Showalter, W. R., de Pater, I., Verbanac, G., Hamilton, D. P., & Burns, J. A 2008, Icarus, 195, 361CrossRefGoogle Scholar
Van Helden, A. 1984a, in Greenberg, R. & Brahic, A. (Eds.), Plantary Rings, (University of Arizona Press), p. 12Google Scholar
Van Helden, A. 1984b, in Gehrels, T. & Matthews, M.S. (Eds.), Saturn, (University of Arizona Press), p. 23Google Scholar
Waite, J. H., Combi, M. R., Ip, W.-H., Cravens, T. E., McNutt, R. L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., & Tseng, W.-L. 2006, Science, 311, 1419CrossRefGoogle Scholar