Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T23:15:51.618Z Has data issue: false hasContentIssue false

Jovian encounter manifolds

Published online by Cambridge University Press:  16 October 2024

Nataša Todorović*
Affiliation:
Belgrade Astronomical Observatory, Volgina 7, 11000 Belgrade, Serbia
Nikola Knežević
Affiliation:
Belgrade Astronomical Observatory, Volgina 7, 11000 Belgrade, Serbia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent numerical studies have shown that the entire solar system is permeated with arch-like structures originating from all planets. Particles placed on such arches experience planetary close encounters after only one or few orbital revolutions. In this work, we are interested how thece arches, which we associate to encounter manifolds of Jupiter, appear in three dimensions for higher inclinations.

Our results show that about 0.5% of the observed domain [a, e, i] = [2 AU, 11.5 AU] × [0, 0.7] × [0°, 90°] is covered by the manifolds. For inclinations up to ∼5°, the arch-like structures are almost unchanged compared to those initially observed in the orbital plane of Jupiter. At higher inclinations, the number of encounter orbits rapidly decreases to narrow domains where the manifolds stretch up to inclinations of 90° (and above) in a very steep manner.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Batygin, K., Morbidelli, A., and Holman, M.J.: 2015, The Astrophysical Journal 799, 120CrossRefGoogle Scholar
Cincotta, P.M., Giordano, C.M., and Simó, C.: 2003, Physica D Nonlinear Phenomena 182, 151 CrossRefGoogle Scholar
Cincotta, P.M. and Simó, C.: 2000, Astronomy and Astrophysics Supplement Series 147, 205 CrossRefGoogle Scholar
Conley, C.C.: 1968, SIAM J. Appl. Math 16, 732 CrossRefGoogle Scholar
Daquin, J., Rosengren, A.J., Alessi, E.M., Deleflie, F., Valsecchi, G.B., and Rossi, A.: 2016, Celestial Mechanics and Dynamical Astronomy 124, 335 CrossRefGoogle Scholar
Davis, K.E., Anderson, R.L., Scheeres, D.J., and Born, G.H.: 2010, Celestial Mechanics and Dynamical Astronomy 107, 471 CrossRefGoogle Scholar
Efthymiopoulos, C. and Sándor, Z.: 2005, Monthly Notices of the Royal Astronomical Society 364CrossRefGoogle Scholar
Fitzgerald, J. and Ross, S.D.: 2022, Advances in Space Research 70, 144 CrossRefGoogle Scholar
Froeschlé, C., Lega, E., and Gonczi, R.: 1997, Celestial Mechanics and Dynamical Astronomy 67, 41 CrossRefGoogle Scholar
Froeschlé, C. and Lega, E.: 2000, Celestial Mechanics and Dynamical Astronomy 78, 167 CrossRefGoogle Scholar
Froeschlé, C., Guzzo, M., and Lega, E.: 2000, Science 289, 2108 CrossRefGoogle Scholar
Giorgilli, A. and Skokos, C.: 1997, Astronomy and Astrophysics 317, 254 Google Scholar
Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., and Ross, S.D.: 2004, Nonlinearity 17, 1571 CrossRefGoogle Scholar
Guzzo, M. and Lega, E.: 2015, Astronomy and Astrophysics 579, A79 CrossRefGoogle Scholar
Hinse, T.C., Christou, A.A., Alvarellos, J.L.A., and Goździewski, K.: 2010, MNRAS 404, 837 CrossRefGoogle Scholar
Holt, T. R., Nesvorný, D., Horner, J., King, R., Marschall, R., Kamrowski, M., and, …: 2020, Monthly Notices of the Royal Astronomical Society 495, 408 CrossRefGoogle Scholar
Koon, W.S., Lo, M.W., Marsden, J.E., and Ross, S.D.: 2000, Chaos 10, 427CrossRefGoogle Scholar
Kovác̆ová, M., Kornoš, L., and Matlovic̆, P.: 2022, MNRAS 509, 3842Google Scholar
Laskar, J.: 1994, Astronomy and Astrophysics 287, L9 Google Scholar
Lega, E. and Guzzo, M.: 2016, Physica D Nonlinear Phenomena 325, 41 CrossRefGoogle Scholar
Levison, H.F., Shoemaker, E.M., and Shoemaker, C.S.: 1997, Nature 385, 42 CrossRefGoogle Scholar
Paez, R.I. and Guzzo, M.: 2020, International Journal of Non Linear Mechanics 120, 103417 CrossRefGoogle Scholar
Poincaré, H.: 1892, Les méthodes nouvelles de la mécanique céleste, by Poincaré, Henri. Paris, Gauthier-Villars et fils, 1892.Google Scholar
Rein, H. and Liu, S. F.: 2012, Astronomy and Astrophysics 537, A128 CrossRefGoogle Scholar
Rein, H. and Tamayo, D.: 2015, MNRAS 452, 376 CrossRefGoogle Scholar
Rein, H. and Tamayo, D.: 2016, MNRAS 459, 2275 CrossRefGoogle Scholar
Scantamburlo, E., Guzzo, M., and Paez, R.I.: 2022, Acta Astronautica 200, 97 CrossRefGoogle Scholar
Di Sisto, R.P., Ramos, X.S., and Beaugé, C.: 2014, Icarus 243, 287 CrossRefGoogle Scholar
Sussman, G.J. and Wisdom, J.: 1992, Science 257CrossRefGoogle Scholar
Todorović, N.: 2017, MNRAS 465, 4441CrossRefGoogle Scholar
Todorović, N., Wu, D.,& Rosengren, A.J.: 2020, Sci. Adv., 6, eabd1313CrossRefGoogle Scholar
Topputo, F., Vasile, M., and Bernelli-Zazzera, F.: 2005, Journal of the Astronautical Sciences 53, 353 CrossRefGoogle Scholar
Vaquero, M. and Howell, K.C.: 2014, Acta Astronautica 94, 302 CrossRefGoogle Scholar
Wisdom, J. and Holman, M., 1991, The Astronomical Journal, 102, 1528 CrossRefGoogle Scholar