Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T00:33:21.412Z Has data issue: false hasContentIssue false

Joint Discussion 3 Solar active regions and 3D magnetic structure

Published online by Cambridge University Press:  01 August 2006

Debi Prasad Choudhary
Affiliation:
Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA, 19330, USA email: [email protected]
Michal Sobotka
Affiliation:
Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 298, 25165 Ondřejov, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Keeping in view of the modern powerful observing tools, among others Hinode (formerly SOLAR-B), STEREO and Frequency-Agile Solar Radiotelescope, and sophisticated modelling techniques, Joint Discussion 3 during the IAU General Assembly 2006 focused on the properties of magnetic field of solar active regions starting in deep interior of the Sun, from where they buoyantly rise to the coronal heights where the site of most explosive events are located. Intimately related with the active regions, the origin and evolution of the magnetic field of quiet Sun, the large scale chromospheric structures were also the focal point of the Joint Discussion. The theoretical modelling of the generation and dynamics of magnetic field in solar convective zone show that the interaction of the magnetic field with the Coriolis force and helical turbulent convection results in the tilts and twists in the emerging flux. In the photosphere, some of these fluxes appear in sunspots with field strengths up to about 6100 G. Spectro-polarimetric measurements reveal that the line of sight velocities and magnetic field of these locations are found to be uncombed and depend on depth in the atmosphere and exhibit gradients or discontinuities. The inclined magnetic fields beyond penumbra appear as moving magnetic features that do not rise above upper photospheric heights. As the flux rises, the solar chromosphere is the most immediate and intermediary layer where competitive magnetic forces begin to dominate their thermodynamic counterparts. The magnetic field at these heights is now measured using several diagnostic lines such as Ca II 854.2 nm, H I 656.3 nm, and He I 1083.0 nm. The radio observations show that the coronal magnetic field of post flare loops are of the order of 30 G, which might represent the force-free magnetic state of active region in the corona. The temperatures at these coronal heights, derived from the line widths, are in the range from 2.4 to 3.7 million degree. The same line profile measurements indicate the existence of asymmetric flows in the corona. The theoretical extrapolation of photospheric field into coronal heights and their comparison with the observations show that there exists a complex topology with separatrices associated to coronal null points. The interaction of these structures often lead to flares and coronal mass ejections. The current MHD modelling of active region field shows that for coronal mass ejection both local active region magnetic field and global magnetic field due to the surrounding magnetic flux are important. Here, we present an extended summary of the papers presented in Joint Discussion 03 and open questions related to the solar magnetic field that are likely to be the prime issue with the modern observing facilities such as Hinode and STEREO missions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Archontis, V., Moreno Insertis, F., Galsgaard, K., Hood, A., & O'Shea, E. 2004, A&A, 426, 1047Google Scholar
Aulanier, G., Démoulin, P., Schmieder, B., Fang, C., & Tang, Y. H. 1998, A&A, 183, 369Google Scholar
Aulanier, G., DeLuca, E. E., Antiochos, S. K., McMullen, R. A., & Golub, L. 2000, ApJ, 540, 1126CrossRefGoogle Scholar
Aulanier, G., Pariat, E., & Démoulin, P. 2005, A&A, 444, 961Google Scholar
Aulanier, G., Pariat, E., Démoulin, P., & DeVore, C. R. 2006, Solar Phys., 238, 347CrossRefGoogle Scholar
Bagalá, L. G., Mandrini, C. H., Rovira, M. G., & Démoulin, P. 2000, A&A, 363, 779Google Scholar
Baranovsky, E.A. 1993, Contrib. Astron. Obs. Skalnaté Pleso, 23, 107Google Scholar
Démoulin, P., Hénoux, J. C., & Mandrini, C. H. 1994, A&A, 285, 1023Google Scholar
Démoulin, P., Hénoux, J. C., Priest, E. R., & Mandrini, C. H. 1996, A&A, 308, 643Google Scholar
Démoulin, P., Bagalá, L. G., Mandrini, C. H., Hénoux, J. C., & Rovira, M. G. 1997, A&A, 325, 305Google Scholar
Dorch, S. B. F. 2007, A&A, 461, 325Google Scholar
Fan, Y. 2004, Living Reviews in Solar Physics 1, 1Google Scholar
Fletcher, L., López Fuentes, M. C., Mandrini, C. H., Schmieder, B., Démoulin, P., Mason, H. E., Young, P. R., & Nitta, N. 2001, Solar Phys., 203, 255Google Scholar
Fletcher, L., Metcalf, T. R., Alexander, D., Brown, D. S., & Ryder, L. A. 2001b, ApJ, 554, 451Google Scholar
Gaizauskas, V., Mandrini, C. H., Démoulin, P., Luoni, M. L., & Rovira, M. G. 1998, A&A, 332, 353Google Scholar
Galsgaard, K., Nordlund, Å. 1997, Journ. Geoph. Res., 102, 219Google Scholar
Hagino, M., & Sakurai, T. 2004, Publ. Astron. Soc. Japan, 56, 831Google Scholar
Longcope, D. W. 2006, Living Reviews in Solar Physics 2, . . . (http://www.livingreviews.org/lrsp-2005-7)CrossRefGoogle Scholar
Mandrini, C. H., Démoulin, P., Hénoux, J.-C., & Machado, M. E. 1991, A&A, 250, 541Google Scholar
Mandrini, C. H., Démoulin, P., Bagalá, L.G., van Driel-Gesztelyi, L., Hénoux, J. C., Schmieder, B., & Rovira, M. G. 1997, Solar. Phys. 174, 229Google Scholar
Mandrini, C. H., Démoulin, P., Schmieder, B., Deng, Y. Y., & Rudawy, P. 2002, A&A 391, 317Google Scholar
Mandrini, C. H., Démoulin, P., Schmieder, B., DeLuca, E. E., Pariat, E., & Uddin, W. 2006, Solar Phys., 238, 293CrossRefGoogle Scholar
Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M. K., Rust, D. M., & Bernasconi, P. N. 2004, A&A, 614, 1099Google Scholar
Priest, E. R., & Démoulin, P. 1995, Journ. Geoph. Res., 100, 23443Google Scholar
Rust, D. M., & Kumar, A. 1994, Solar Phys., 155, 69Google Scholar
Titov, V. S., Priest, E. R., & Démoulin, P. 1993, A&A 276, 564Google Scholar
Titov, V. S., Hornig, G., & Démoulin, P. 2002, Journ. Geoph. Res., 107, SSH 3, 113.Google Scholar