Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T11:10:17.273Z Has data issue: false hasContentIssue false

Jet-gas interactions at crucial jet power for feedback

Published online by Cambridge University Press:  24 March 2015

D. M. Worrall
Affiliation:
HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK email: [email protected]
M. Birkinshaw
Affiliation:
HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most X-ray studies of radio-mode feedback have concentrated on locally-abundant low-power radio sources in relatively rich cluster environments. But the scaling found between mechanical and radiative power, when combined with the radio luminosity function, means that half of the heating in the local Universe is expected from higher-power sources, which lie within a factor of about three of the FRI/II transition, and these sources encounter a wide range of atmosphere properties. We summarize what is observed at FRI/II transition powers from a complete sample observed with modest Chandra exposure times. We then discuss two systems with deep Chandra data. In one we find that the work done in driving shocks exceeds that in evacuating cavities. This source also displays a remarkable jet-cloud interaction, and revealing hotspot X-ray emission. In the second we find evidence of radio-emitting plasma running along boundaries between gas of different temperature, apparently lubricating the gas flows and inhibiting heat transfer, and itself being heavily structured by the process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Best, P. N., Kauffmann, G., Heckman, T. M., & Ivezić, Z., 2005, MNRAS, 362, 9Google Scholar
Bîrzan, L., Rafferty, D. A., McNamara, B. R., Wise, M. W., & Nulsen, P. E. J., 2004, ApJ, 607, 800Google Scholar
Böhringer, H., Voges, W., Fabian, A. C., Edge, A. C., & Neumann, D. M., 1993, MNRAS, 264, L25Google Scholar
Cavagnolo, K. W., McNamara, B. R., Nulsen, P. E. J., et al., 2010, ApJ, 720, 1066Google Scholar
Dunn, R. J. H., Fabian, A. C., & Taylor, G. B., 2005, MNRAS, 364, 1343CrossRefGoogle Scholar
Fabian, A. C., 2012, ARAA, 50, 455Google Scholar
Fanaroff, B. L. & Riley, J. M., 1974, MNRAS, 167, 31PGoogle Scholar
Hardcastle, M. J., Sakelliou, I., & Worrall, D. M., 2005, MNRAS, 359, 1007Google Scholar
Hardcastle, M. J., Kraft, R. P., Worrall, D. M., et al., 2007, ApJ, 662, 166Google Scholar
Hardcastle, M. J.et al. 2012, MNRAS, 424, 1774Google Scholar
Harris, D. E. & Krawcynski, H., 2006, ARAA, 44, 463Google Scholar
Hodges-Kluck, E. J., Reynolds, C. S., Cheung, C. C., & Miller, M. C., 2010, ApJ, 710, 1205CrossRefGoogle Scholar
Kraft, R. P., et al. 2012, ApJ, 749, 19Google Scholar
Laing, R. A., Riley, J. M., & Longair, M. S. 1983, MNRAS, 204, 151Google Scholar
Mannering, E. J. A., 2013, Ph. D. thesis, University of BristolGoogle Scholar
Mannering, E. J. A., Worrall, D. M., & Birkinshaw, M., 2013, MNRAS, 431, 858Google Scholar
McNamara, B. R. & Nulsen, P. E. J., 2007, ARAA, 45, 117Google Scholar
Panagoulia, E. K., Fabian, A. C., Sanders, J. S., & Hlavacek-Larrondo, J., 2014, MNRAS, 444, 1236Google Scholar
Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J., & Wise, M. W., 2006, ApJ, 652, 216Google Scholar
Smith, D., Young, A. J., Worrall, D. M., & Birkinshaw, M., 2014, in preparationGoogle Scholar
Sun, M., Jerius, D., & Jones, C., 2005, ApJ, 633, 165Google Scholar
Worrall, D. M., 2009, A&AR, 17, 1Google Scholar
Worrall, D. M. & Birkinshaw, M., 2014, ApJ, 784, 36Google Scholar
Worrall, D. M., Birkinshaw, M., Young, A. J., et al., 2012, MNRAS, 424, 1346Google Scholar