Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T16:35:04.188Z Has data issue: false hasContentIssue false

ISOSCELES: Grid of stellar atmosphere and hydrodynamic models of massive stars

Published online by Cambridge University Press:  29 August 2024

Ignacio Araya*
Affiliation:
Vicerrectoría de Investigación, Universidad Mayor, Chile.
Natalia Machuca
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
Michel Curé
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
Catalina Arcos
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectroscopy can decode the radiation from stars in an appropriate way and derive many properties of different stellar objects. In this work we seek to derive simultaneously stellar and wind parameters of massive stars. To model the data we use the radiative transport code Fastwind with the hydrodynamic solutions derived using our stationary code Hydwind as input, instead of the β-law. Then, ISOSCELES, our grid of stellar atmosphere and hydrodynamic models of massive stars, is used to derive the physical properties of the observed spectra through spectral line fittings. This quantitative spectroscopic analysis provide an estimation about the line–force parameters, whose theoretical calculations are complex. In addition, we expect to confirm that the hydrodynamic δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and, at the same time, explain disagreements between observational data and theoretical models for the Wind–Momentum Luminosity Relationship (WLR).

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 Google Scholar
Curé, M. 2004, ApJ, 614, 929 CrossRefGoogle Scholar
Curé, M., Cidale, L., & Granada, A. 2011, ApJ, 737, 18 CrossRefGoogle Scholar
Friend, D. B., & Abbott, D. C. 1986, ApJ, 311, 701 Google Scholar
Haucke, M., Cidale, L. S., Venero, R. O. J., Curé, M., Kraus, M., Kanaan, S., & Arcos, C. 2018, A&A, 614, A91 Google Scholar
Puls, J., Urbaneja, M. A., Venero, R., Repolust, T., Springmann, U., Jokuthy, A., & Mokiem, M. R. 2005, A&A, 435, 669 CrossRefGoogle Scholar
Simón-Daz, S., & Herrero, A. 2014, A&A, 562, A135 CrossRefGoogle Scholar