Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T19:48:48.175Z Has data issue: false hasContentIssue false

Is there more global solar activity on the Sun?

Published online by Cambridge University Press:  26 February 2010

J. X. Wang
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories of China, CAS, A20 Datun Road, Chaoyang District, Beijing, 100012 email: [email protected]
Y. Z. Zhang
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories of China, CAS, A20 Datun Road, Chaoyang District, Beijing, 100012 email: [email protected]
G. P. Zhou
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories of China, CAS, A20 Datun Road, Chaoyang District, Beijing, 100012 email: [email protected]
Y. Y. Wen
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories of China, CAS, A20 Datun Road, Chaoyang District, Beijing, 100012 email: [email protected]
J. Jiang
Affiliation:
Max Planck Institute for Solar System Research email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There appear indications of more global activity on the Sun which is larger, much beyond the scale of solar active regions (ARs). These indications include formation, flaring and eruption of the trans-equatorial loops seen in EUV and X-rays, formation and eruption of trans-equatorial filaments, global magnetic connectivity in EUV dimming associated with halo-coronal mass ejections, wide spread of radio burst sources in meter wavelength in the solar corona, and quasi-simultaneous magnetic flux emergence in both hemispheres seen during some major solar events. With examples of a few major events in the last solar cycle we discuss the possibility that there is large or global-scale activity on the Sun. Its spatial scale is many times larger than that of AR and temporal scale is over 10 hours. The exemplified trans-equatorial loops are anchored in ARs and their activity is temporally associated with flares in ARs too. In some sense the flares in ARs appear either as a part of or a precursor of the more global activity. It is likely that the combination of the flares in ARs and the associated global activity is responsible to the major solar-terrestrial events. More efforts in understanding the global activity are undertaken.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Antiochos, S. K. 1998, ApJ, 502, L181L184CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485493CrossRefGoogle Scholar
Attrill, G., Nakwacki, M. S., Harra, L. K., van Driel-Gesztelyi, L., Mandrini, C. H., Dasso, S., & Wang, J. 2006, Sol. Phys., 238, 117139CrossRefGoogle Scholar
Attrill, G., Harra, L. K., van Driel-Gesztelyi, L., & Demoulin, P. 2007a, ApJL, 656, L101L104CrossRefGoogle Scholar
Bemporad, A., Sterling, A. C., Moore, R. L., & Poletto, G. 2005, ApJL, 635, L189L192CrossRefGoogle Scholar
Culhane, J. L. & Siscoe, G. L. 2007, Sol. Phys., 244, 312CrossRefGoogle Scholar
Harra, L. K., Matthews, S. A., & van Driel-Gesztelyi, L. 2003, ApJ, 598, L59L62.CrossRefGoogle Scholar
Harra, L. K., Crooker, N. U., Mandrini, C. H., van Driel- Gesztelyi, L., Dasso, S., Wang, J., Elliott, H., Attrill, G., Jackson, B. V., & Bisi, M. M. 2007a, Sol. Phys., 244, 95114CrossRefGoogle Scholar
Harra, L. K., Hara, H., Imada, S., Young, P. R., Williams, D., Sterling, A., Korendyke, C., & Attrill, G. 2006, Publ. Astron. Soc. Japan, 59, S801S806CrossRefGoogle Scholar
Liu, Y. 2007, ApJ, 654, L171L174CrossRefGoogle Scholar
Maia, D., Vourlidas, A., Pick, M., Howard, R., Schwenn, R., & Magalhães, A. 1999, J. Geophys. Res., 104, 1250712514CrossRefGoogle Scholar
Mandrini, C. H., Nakwacki, M. S., Attrill, G., van Driel-Gesztelyi, L., Demoulin, P.Dasso, S., & Elliot, H. 2007, Sol. Phys., 244, 2543CrossRefGoogle Scholar
Moore, R., Sterling, A. C., & Suess, S. T. 2007, ApJ, 668, 12211231CrossRefGoogle Scholar
Pohjolainen, S., Maia, D., Pick, M., Vilmer, N., Khan, J. I., Otruba, W., Warmuth, A., Benz, A., Alissandrakis, C., & Thompson, B. J. 2001, Astrophys. J., 556, 421431CrossRefGoogle Scholar
van Driel-Gesztelyi, L., Attrill, G. D. R., Démoulin, P., Mandrini, C. H., & Harra, L. K. 2008, Ann. Geophys., 26, 30773088CrossRefGoogle Scholar
Wang, J., Zhou, G., Wen, Y., Zhang, Y., Wang, H., Deng, Y., Zhang, J., & Harra, L. K. 2006, ChJAA, 6, 247259Google Scholar
Wang, J.-X., Zhang, Y.-Z., Zhou, G.-P., Harra, L., Williams, D., & Jiang, Y.-C. 2007, Sol. Phys., 244, 7594CrossRefGoogle Scholar
Wang, T., Yan, Y., Wang, J., Kurokawa, H., & Shibata, K. 2002, ApJ, 572, 580597CrossRefGoogle Scholar
Wen, Y., Wang, J., Maia, D. J. F., Zhang, Y., Zhao, H., & Zhou, G. 2006, Sol. Phys., 239, 257276CrossRefGoogle Scholar
Zhang, Y., Wang, J., Attrill, G. D. R., Harra, L. K., Yang, Z., & He, X. 2007, Sol. Phys., 241, 329349CrossRefGoogle Scholar
Zhang, Y., Wang, J., & Hu, Y. Q. 2006, ApJ, 641, 572576CrossRefGoogle Scholar
Zhang, Y. & Wang, J. 2007, ApJ, 663, 592597CrossRefGoogle Scholar
Zhao, H., Wang, J., Zhang, J., Xiao, C.-J., & Wang, H. 2008, ChJAA, 8, 133145Google Scholar
Zhou, G.-P., Wang, J.-X., Wang, Y.-M., & Zhang, Y.-Z. 2007, Sol. Phys., 244, 1324CrossRefGoogle Scholar
Zhukov, A. N. & Veselovsky, I. S. 2007, ApJL, 664, 131134CrossRefGoogle Scholar
Zirin, H. 1985, Aust J. Phys., 38, 961969CrossRefGoogle Scholar