Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T06:17:50.542Z Has data issue: false hasContentIssue false

Is the magnetospheric accretion active in the Herbig Ae/Be stars?

Published online by Cambridge University Press:  16 August 2023

Giovanni Pinzón
Affiliation:
Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá, Colombia
Jesús Hernández
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, B.C, México
Javier Serna
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, B.C, México
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This contribution is based on the work published by (Pinzón et al. 2021) in which we computed rotation rates for a sample of 79 young stars (∼3 Myr) in a wide range of stellar masses (from T Tauri Stars to Herbig Ae/Be stars) in in the Orion Star Formation Complex (OSFC). We study whether the magnetospheric accretion scenario (MA), valid for young low mass stars, may be applied over a wide range of stellar masses of not. Under the assumption that stellar winds powered by stellar accretion are the main source for the stellar spin down, the hypothesis of an extension of MA toward higher masses seems plausible. A comparison with Ap/Bp stars suggest that HAeBes should suffer a loss of angular momentum by a factor between 12 and 80 during the first 10 Myr in order to match the magnetic Ap/Bp zone in HR diagram.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alecian, E., Wade, G., et al. 2013, MNRAS, 429, 1001 CrossRefGoogle Scholar
Aurière, M., Wade, G., 2007, et al. A&A, 475, 1053 Google Scholar
Baraffe, I. and Homeier, D., 2015, A&A, 577, 42 Google Scholar
Boehm, T. and Catalá, C., 1994, A&A, 290, 167 Google Scholar
Cauley, P., Johns-Krull, C., et al. 2015, ApJ, 810, 5 CrossRefGoogle Scholar
Fairlamb, R., Oudmaijer, R., et al. 2015, MNRAS, 453, 976 CrossRefGoogle Scholar
Ferrario, L., Pringle, J., et al. 2009, MNRAS, 400, L71 CrossRefGoogle Scholar
Hernández, J., Calvet, N., et al. 2014, ApJ, 794, 36 CrossRefGoogle Scholar
Hubrig, A. A., Ilyin, I., et al. 2014, in European Phys. Journal Web of Conf., Vol. 64, 08006CrossRefGoogle Scholar
Matt, S. and Pudritz, R., 2008, ApJ, 678, 1109 CrossRefGoogle Scholar
Pinzón, G., Hernández, J., Serna, J., et al. 2021, AJ, 162, 90 CrossRefGoogle Scholar
Serna, J., Hernández, J., et al. 2021, ApJ, 923, 177 CrossRefGoogle Scholar
Tonry, J. and Davis, M., 1979, AJ, 84, 1511 CrossRefGoogle Scholar