Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-20T09:55:42.000Z Has data issue: false hasContentIssue false

Is the Galactic Spiral Potential 2- or 4-arms?

Published online by Cambridge University Press:  02 August 2018

Preben Grosbøl
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching, Germany email: [email protected]
Giovanni Carraro
Affiliation:
Dipartimento di Fisica e Astronomia, Universita di Padova Vicolo Osservatorio 3, I-35122, Padova, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Young objects (e.g. OB-associations and HII regions) in the Galaxy outline a 4-armed spiral structure whereas the tangent points of arms observed in the near-infrared indicate a 2-armed pattern. The more important issue is whether the spiral potential in the Galaxy is 2- or 4-armed i.e. if all arms traced by young objects also have a significant mass perturbation associated to them. This can be tested by studying the mean radial velocity of a well defined stellar population across the spiral arms and thereby estimating the surface density change.

The current paper presents a preliminary analysis of the radial velocities of a sample of 736 early-type stars toward the Galactic center observed with FLAMES/VLT. A comparison with N-body models in a fixed spiral potential with 2 or 4 arms suggests that no significant mass is associated to the Sagittarius arm. The data are consistent with 2-armed models with pattern speeds in the range of 15-30 km s−1 kpc−1 and relative radial forces of less than 4%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

Footnotes

Based on observations collected at the European Southern Observatory, Chile (ESO programme 097.B-00245, 099.B-0697)

References

Bland-Hawthorn, J. & Gerhard, O. 2016, ARAA, 54, 529Google Scholar
Bressan, A., Marigo, P., Girardi, L., Salasnich, B. et al. 2012, MNRAS, 427, 127Google Scholar
Drimmel, R. 2000 A&A, 358, L13Google Scholar
Englemaier, P. & Gerhard, O. 1999, MNRAS, 304, 512Google Scholar
Grosbøl, P. 2016, A&A, 585, A141Google Scholar
Marigo, P., Girardi, L., Bressan, A., Rosenfield, P., Aringer, B. et al. 2017, ApJ, 835, 77Google Scholar
Monguio, M., Grosbøl, P., & Figueras, F. 2015, A&AGoogle Scholar
Ried, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W. et al. 2014, ApJ, 783, 130Google Scholar
Rodriquez-Merino, L. H., Chavez, M., & Vertone, E. 2005, ApJ, 626, 411Google Scholar
Russeil, D., Adami, C. & Georgelin, Y. M. 2007, A&A 470, 161Google Scholar
Saito, R. K., Hempel, M., Minniti, D., Lucas, P. W. et al. 2012, A&A, 537, A107Google Scholar
Yáñez, M. A., Norman, M. L., Martos, M. A., & Hayes, J. C. 2008, ApJ, 672, 207Google Scholar