Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:11:45.047Z Has data issue: false hasContentIssue false

Interstellar and intergalactic dynamos

Published online by Cambridge University Press:  18 July 2013

M. Hanasz
Affiliation:
Centre for Astronomy, Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, ul. Grudziadzka 5, PL-87-100 Torun, Poland, *E-mail: [email protected]
D. Woltanski
Affiliation:
Centre for Astronomy, Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, ul. Grudziadzka 5, PL-87-100 Torun, Poland, *E-mail: [email protected]
K. Kowalik
Affiliation:
Centre for Astronomy, Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, ul. Grudziadzka 5, PL-87-100 Torun, Poland, *E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review recent developments of amplification models of galactic and intergalactic magnetic field. The most popular scenarios involve variety of physical mechanisms, including turbulence generation on a wide range of physical scales, effects of supernovae, buoyancy as well as the magnetorotational instability. Other models rely on galaxy interaction, which generate galactic and intergalactic magnetic fields during galaxy mergers. We present also global galactic-scale numerical models of the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker (1992). We conduct a series of direct CR+MHD numerical simulations of the dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and CR components. We take into account CRs accelerated in randomly distributed supernova (SN) remnants, and assume that SNe deposit small-scale, randomly oriented, dipolar magnetic fields into the ISM. The amplification timescale of the large-scale magnetic field resulting from the CR-driven dynamo is comparable to the galactic rotation period. The process efficiently converts small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields. The resulting magnetic field structure resembles the X-shaped magnetic fields observed in edge-on galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Allen, C. & Santillan, A.: 1991, Revista Mexicana de Astronomia y Astrofisica, 22, 255 Google Scholar
Arshakian, T. G., Beck, R., Krause, M., & Sokoloff, D.: 2009, A&A, 494, 21 Google Scholar
Balbus, S. A. & Hawley, J. F.: 1998, Reviews of Modern Physics, 70, 1 Google Scholar
Beck, A. M., Lesch, H., Dolag, K., Kotarba, H., Geng, A., & Stasyszyn, F. A.: 2012, MNRAS, 422, 2152 Google Scholar
Beck, R.: 2012, Space Sci Rev, 166, 215 Google Scholar
Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D.: 1996, ARAA, 34, 155 Google Scholar
Bell, E. F.: 2003, ApJ, 586, 794 Google Scholar
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A., & Ptuskin, V. S.: 1990, Astrophysics of cosmic rays, Amsterdam: North-Holland, 1990, edited by Ginzburg, V.L. Google Scholar
Bisnovatyi-Kogan, G. S., Ruzmaikin, A. A., & Syunyaev, R. A.: 1973, Soviet Astronomy, 17, 137 Google Scholar
Blackman, E. G. & Field, G. B.: 2000, ApJ, 534, 984 Google Scholar
Bonafede, A., Dolag, K., Stasyszyn, F., Murante, G., & Borgani, S.: 2011, MNRAS, 418, 2234 CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K.: 2005, Phys Rep, 417, 1 CrossRefGoogle Scholar
Chyży, K. T.: 2008, A&A, 482, 755 Google Scholar
Dolag, K., Bartelmann, M., & Lesch, H.: 2002, A&A, 387, 383 Google Scholar
Donnert, J., Dolag, K., Lesch, H., & Müller, E.: 2009, MNRAS, 392, 1008 Google Scholar
Dubois, Y. & Teyssier, R.: 2010, A&A, 523, A72 Google Scholar
Dziourkevitch, N., Elstner, D., & Rüdiger, G.: 2004, A&A, 423, L29 Google Scholar
Enßlin, T., Vogt, C., & Pfrommer, C.: 2005, in Chyzy, K. T., Otmianowska-Mazur, K., Soida, M., and Dettmar, R.-J. (eds.), The Magnetized Plasma in Galaxy Evolution, pp 231–238Google Scholar
Ferriere, K.: 1998, ApJ, 497, 759 Google Scholar
Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M., & Horellou, C.: 2011, MNRAS, 412, 2396 Google Scholar
Geng, A., Kotarba, H., Bürzle, F., Dolag, K., Stasyszyn, F., Beck, A., & Nielaba, P.: 2012, MNRAS, 419, 3571 Google Scholar
Giacalone, J. & Jokipii, J. R.: 1999, ApJ, 520, 204 Google Scholar
Gissinger, C., Fromang, S., & Dormy, E.: 2009, MNRAS, 394, L84 Google Scholar
Govoni, F. & Feretti, L.: 2004, International Journal of Modern Physics D, 13, 1549 CrossRefGoogle Scholar
Gressel, O., Elstner, D., & Rüdiger, G.: 2011, in Bonanno, A., de Gouveia Dal Pino, E., & Kosovichev, A. G. (eds.), IAU Symposium, Vol. 274 of IAU Symposium, pp 348354 Google Scholar
Gressel, O., Elstner, D., Ziegler, U., & Rüdiger, G.: 2008a, A&A, 486, L35 Google Scholar
Gressel, O., Ziegler, U., Elstner, D., & Rüdiger, G.: 2008b, Astronomische Nachrichten, 329, 619 Google Scholar
Hanasz, M., Kowal, G., Otmianowska-Mazur, K., & Lesch, H.: 2004, ApJL, 605, L33 Google Scholar
Hanasz, M. & Lesch, H.: 2003, A&A, 412, 331 Google Scholar
Hanasz, M., Otmianowska-Mazur, K., Kowal, G., & Lesch, H.: 2006, Astronomische Nachrichten, 327, 469 Google Scholar
Hanasz, M., Otmianowska-Mazur, K., Kowal, G., & Lesch, H.: 2009a, A&A, 498, 335 Google Scholar
Hanasz, M., Otmianowska-Mazur, K., & Lesch, H.: 2002, A&A, 386, 347 Google Scholar
Hanasz, M., Wóltański, D., & Kowalik, K.: 2009b, ApJL, 706, L155 Google Scholar
Kotarba, H., Lesch, H., Dolag, K., Naab, T., Johansson, P. H., Donnert, J., & Stasyszyn, F. A.: 2011, MNRAS, 415, 3189 Google Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K.: 2009, ApJ, 700, 63 Google Scholar
Kowal, G., Otmianowska-Mazur, K., & Hanasz, M.: 2006, A&A, 445, 915 Google Scholar
Krause, F. & Raedler, K.-H.: 1980, Mean-field magnetohydrodynamics and dynamo theory Google Scholar
Krause, M.: 2009, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 36 of Revista Mexicana de Astronomia y Astrofisica, vol. 27, pp 25–29Google Scholar
Kronberg, P. P.: 1994, Reports on Progress in Physics, 57, 325 Google Scholar
Kulpa-Dybeł, K., Otmianowska-Mazur, K., Kulesza-Żydzik, B., Hanasz, M., Kowal, G., Wóltański, D., & Kowalik, K.: 2011, ApJL, 733, L18 CrossRefGoogle Scholar
Kulsrud, R. M. & Zweibel, E. G.: 2008, Reports on Progress in Physics, 71 (4), 046901 Google Scholar
Lesch, H. & Chiba, M.: 1995, A&A, 297, 305 Google Scholar
Mac Low, M.-M. & Klessen, R. S.: 2004, Reviews of Modern Physics, 76, 125 Google Scholar
Otmianowska-Mazur, K., Kowal, G., & Hanasz, M.: 2007, ApJ, 668, 110 Google Scholar
Otmianowska-Mazur, K., Soida, M., Kulesza-Żydzik, B., Hanasz, M., & Kowal, G.: 2009, ApJ, 693, 1 Google Scholar
Otmianowska-Mazur, K. & Vollmer, B.: 2003, A&A, 402, 879 Google Scholar
Parker, E. N.: 1966, ApJ, 145, 811 Google Scholar
Parker, E. N.: 1992, ApJ, 401, 137 CrossRefGoogle Scholar
Rees, M. J.: 2006, Astronomische Nachrichten, 327, 395 Google Scholar
Ruzmaikin, A. A., Sokolov, D. D., & Shukurov, A. M.: 1988, Magnitnye polia galaktik Google Scholar
Schlickeiser, R. & Lerche, I.: 1985, A&A, 151, 151 Google Scholar
Sellwood, J. A. & Balbus, S. A.: 1999, ApJ, 511, 660 CrossRefGoogle Scholar
Shukurov, A.: 2004, ArXiv Astrophysics e-prints Google Scholar
Shukurov, A., Sokoloff, D., Subramanian, K., & Brandenburg, A.: 2006, A&A, 448, L33 Google Scholar
Siejkowski, H., Soida, M., Otmianowska-Mazur, K., Hanasz, M., & Bomans, D. J.: 2010, A&A, 510, A97+ Google Scholar
Subramanian, K., Shukurov, A., & Haugen, N. E. L.: 2006, MNRAS, 366, 1437 Google Scholar
Syrovatskii, S.: 1970, in Habing, H. (ed.), Interstellar Gas Dynamics, p. p. 192Google Scholar
Vainshtein, S. I. & Cattaneo, F.: 1992, ApJ, 393, 165 Google Scholar
Wang, P. & Abel, T.: 2009, ApJ, 696, 96 Google Scholar
Wetzstein, M., Nelson, A. F., Naab, T., & Burkert, A.: 2009, ApJS, 184, 298 Google Scholar
Widrow, L. M.: 2002, Reviews of Modern Physics, 74, 775 CrossRefGoogle Scholar
Wóltański, D., Hanasz, M., & Kowalik, K.: 2013, (in prep)Google Scholar