Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:28:57.506Z Has data issue: false hasContentIssue false

Interpretation of IR variability of AGNs in the hollow bi-conical dust outflow model

Published online by Cambridge University Press:  28 October 2024

Victor L. Oknyansky*
Affiliation:
Department of Physics, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 119234, Moscow, Universitetsky pr-t, 13, Russia
C. Martin Gaskell*
Affiliation:
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that, contrary to simple predictions, most AGNs show at best only a small increase of lags with increasing wavelength in the J, H, K, and L bands. We suggest that a possible cause of this near simultaneity from the near-IR to the mid-IR is that the hot dust is in a hollow bi-conical outflow of which we preferentially see the near side. In the proposed model sublimation or re-creation of dust (with some delay relative luminosity variations) along our line of sight in the hollow cone as the flux varies could be a factor in explaining the AGN changing-look phenomenon (CL). Variations in the dust obscuration can help explain changes in relationship of Hβ time delay on Luv variability. The relative wavelength independence of IR lags simplifies the use of IR lags for estimating cosmological parameters.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Antonucci, R. R. J. 1984, ApJ, 278, 499 CrossRefGoogle Scholar
Baribaud, T., Alloin, D., Glass, I., & Pelat, D. 1992, A&A, 256, 375 Google Scholar
Barvainis, R. 1987, ApJ, 320, 537 CrossRefGoogle Scholar
Baskin, A., & Laor, A. 2018, MNRAS, 474, 1970 CrossRefGoogle Scholar
Bock, J. J., Neugebauer, G., Matthews, K., et al. 2000, AJ, 120, 2904 CrossRefGoogle Scholar
Braatz, J. A., Wilson, A. S., Gezari, D. Y., Varosi, F., & Beichman, C. A. 1993, ApJ, 409, L5 CrossRefGoogle Scholar
Cackett, E. M., & Horne, K. 2006, MNRAS, 365, 1180 CrossRefGoogle Scholar
Cameron, M., Storey, J. W. V., Rotaciuc, V., et al. 1993, ApJ, 419, 136 CrossRefGoogle Scholar
Chen, Y.-J., Bao, D.-W., Zhai, S., et al. 2023, MNRAS, 520, 1807 Google Scholar
Clavel, J., Wamsteker, W., & Glass, I. S. 1989, ApJ, 337, 236 CrossRefGoogle Scholar
Czerny, B., Zajaček, M., Naddaf, M.-H., et al. 2023, European Physical Journal D, 77, 56CrossRefGoogle Scholar
Fitch, W. S., Pacholczyk, A. G., & Weymann, R. J. 1967, ApJ, 150, L67 CrossRefGoogle Scholar
Gaskell, C. M., & Harrington, P. Z. 2018, MNRAS, 478, 1660 CrossRefGoogle Scholar
Glass, I. S. 1992, MNRAS, 256, 23P CrossRefGoogle Scholar
Hönig, S. F., Kishimoto, M., Antonucci, R., et al. 2012, ApJ, 755, 149 CrossRefGoogle Scholar
Huffman, D. R. 1977, Advances in Physics, 26, 129 CrossRefGoogle Scholar
Keel, W. C. 1980, AJ, 85, 198 CrossRefGoogle Scholar
Kishimoto, M., Hönig, S. F., Antonucci, R., et al. 2013, ApJ, 775, L36 CrossRefGoogle Scholar
Kokubo, M., & Minezaki, T. 2020, MNRAS, 491, 4615 CrossRefGoogle Scholar
Koshida, S., Minezaki, T., Yoshii, Y., et al. 2014, ApJ, 788, 159 CrossRefGoogle Scholar
Koshida, S., Yoshii, Y., Kobayashi, Y., et al. 2017, ApJ, 842, L13 CrossRefGoogle Scholar
Laor, A. 2004, in Astronomical Society of the Pacific Conference Series, Vol. 311, AGN Physics with the Sloan Digital Sky Survey, ed. G. T. Richards & P. B. Hall, 169Google Scholar
Lebofsky, M. J., & Rieke, G. H. 1980, Nature, 284, 410 CrossRefGoogle Scholar
Minezaki, T., Yoshii, Y., Kobayashi, Y., et al. 2019, ApJ, 886, 150 CrossRefGoogle Scholar
Netzer, H. 2015, ARA&A, 53, 365 CrossRefGoogle Scholar
Oknyanskii, V. L. 1993, Astronomy Letters, 19, 416 Google Scholar
Oknyanskij, V. L. 1999, Odessa Astronomical Publications, 12, 99 Google Scholar
Oknyanskij, V. L., & Horne, K. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 224, Probing the Physics of Active Galactic Nuclei, ed. B. M. Peterson, R. W. Pogge, & R. S. Polidan, 149Google Scholar
Oknyanskij, V. L., Lyuty, V. M., Taranova, O. G., Koptelova, E. A., & Shenavrin, V. I. 2008, Odessa Astronomical Publications, 21, 79 Google Scholar
Oknyanskij, V. L., Metlova, N. V., Artamonov, B. P., Lyuty, A. V., & Lyuty, V. M. 2013, Odessa Astronomical Publications, 26, 212 Google Scholar
Oknyansky, V., Lipunov, V. M., Shatsky, N. I., et al. 2018, The Astronomer’s Telegram, 11703Google Scholar
Oknyansky, V. L., Gaskell, C. M., & Shimanovskaya, E. V. 2015, Odessa Astronomical Publications, 28, 175 CrossRefGoogle Scholar
Oknyansky, V. L., Shenavrin, V. I., Metlova, N. V., & Gaskell, C. M. 2019, Astronomy Letters, 45, 197 CrossRefGoogle Scholar
Pacholczyk, A. G. 1971, ApJ, 163, 449 CrossRefGoogle Scholar
Penston, M. V., Penston, M. J., Neugebauer, G., et al. 1971, MNRAS, 153, 29 CrossRefGoogle Scholar
Penston, M. V., Penston, M. J., Selmes, R. A., Becklin, E. E., & Neugebauer, G. 1974, MNRAS, 169, 357 CrossRefGoogle Scholar
Salpeter, E. E. 1977, ARA&A, 15, 267 CrossRefGoogle Scholar
Wada, K. 2015, ApJ, 812, 82 CrossRefGoogle Scholar
Yoshii, Y., Kobayashi, Y., Minezaki, T., Koshida, S., & Peterson, B. A. 2014, ApJ, 784, L11 CrossRefGoogle Scholar