Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T13:13:30.352Z Has data issue: false hasContentIssue false

Internal kinematics of Globular Clusters: Current state of the art, issues, and what to expect from the future

Published online by Cambridge University Press:  11 March 2020

Andrea Bellini*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The advent of the Gaia mission is bringing astrometry to a new renaissance. Although Gaia will make important breakthroughs in many different scientific areas, stars in the crowded central fields of globular clusters (GCs) and at the faint end of the color-magnitude diagram are and will be out of Gaia’s reach. The Hubble Space Telescope (HST) is an excellent astrometric tool that has allowed us to distinguish and measure positions and brightness of faint stars in pencil-beam fields down to the very center of some GCs. Gaia and HST are two wonderful, complementary tools, but are yet far from being able to offer a complete dynamical picture of GCs. There is now great prefiguration for what the next-generation telescopes will be able to do, both ground- and space-based. This document highlights strengths and weaknesses of different facilities at different spatial and spectral regimes.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bellini, A., Anderson, J., van der Marel, R. P., et al. 2014, ApJ, 797, 115CrossRefGoogle Scholar
Bellini, A., Vesperini, E., Piotto, G., et al. 2015, ApJ Letters, 810, L13CrossRefGoogle Scholar
Bellini, A., Libralato, M., Bedin, L. R., et al. 2018, ApJ, 853, 86CrossRefGoogle Scholar
Bellini, A., Libralato, M., Anderson, J., et al. 2019, Astro2020 white paper no. 173Google Scholar
Cordero, M. J., Hénault-Brunet, V., Pilachowski, C. A., et al. 2017, MNRAS, 465, 3515CrossRefGoogle Scholar
Ferraro, F. R., Mucciarelli, A., Lanzoni, B., et al. 2018, ApJ, 860, 50CrossRefGoogle Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&ARv, 20, 50Google Scholar
Greene, J., Barth, A., Bellini, A., et al. 2019, BAAS, 51, 83Google Scholar
Hobbs, D., Høg, E., Mora, A., et al. 2016, arXiv:1609.07325Google Scholar
Høg, E., & Knude, J. 2014, arXiv:1408.3305Google Scholar
Jeffreson, S. M. R., Sanders, J. L., Evans, N. W., et al. 2017, MNRAS, 469, 4740CrossRefGoogle Scholar
Kamann, S., Husser, T.-O., Dreizler, S., et al. 2018, MNRAS, 473, 5591CrossRefGoogle Scholar
Libralato, M., Bellini, A., van der Marel, R. P., et al. 2018, ApJ, 861, 99CrossRefGoogle Scholar
Milone, A. P., Piotto, G., Renzini, A., et al. 2017, MNRAS, 464, 3636CrossRefGoogle Scholar
Piotto, G., Villanova, S., Bedin, L. R., et al. 2005, ApJ, 621, 777CrossRefGoogle Scholar
Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJ Letters, 661, L53CrossRefGoogle Scholar
Piotto, G., Milone, A. P., Bedin, L. R., et al. 2015, AJ, 149, 91CrossRefGoogle Scholar
Watkins, L. L., van der Marel, R. P., Bellini, A., & Anderson, J. 2015, ApJ, 803, 29CrossRefGoogle Scholar
The WFIRST Astrometry Working Group, Sanderson, R. E., Bellini, A., et al. 2017, arXiv:1712.05420Google Scholar