No CrossRef data available.
Article contents
Intermediate mass black hole feedback in dwarf galaxy simulations with a resolved ISM and accurate nuclear stellar dynamics
Published online by Cambridge University Press: 28 October 2024
Abstract
Recent observations have established that dwarf galaxies can host black holes of intermediate mass (IMBH, 100Mȯ < MIMBH ≲ 105 Mȯ). With modern numerical models, we can test the growth of IMBHs as well as their evolutionary impact on the host galaxy. Our novel subsolar-mass (0.8 solar mass) resolution simulations of dwarf galaxies (M* = 2 × 107 Mȯ) have a resolved three-phase interstellar medium and account for non-equilibrium heating, cooling, and chemistry processes. The stellar initial mass function is fully sampled between 0.08–150 Mȯ while massive stars can form HII regions and explode as resolved supernovae. The stellar dynamics around the IMBH is integrated accurately with a regularization scheme. We present a viscous accretion disk model for the IMBH with momentum, energy, and mass conserving wind feedback. We demonstrate how the IMBH can grow from accretion of the cold and warm gas phase and how the presence of the IMBH and its feedback impacts the gas phase structure.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 19 , Symposium S378: Black Hole Winds at All Scales , December 2023 , pp. 68 - 71
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union