Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T20:16:41.323Z Has data issue: false hasContentIssue false

Integrated spectroscopy of extragalactic Globular Clusters

Published online by Cambridge University Press:  11 March 2020

Charli M. Sakari*
Affiliation:
Department of Astronomy, University of Washington, SeattleWA98195-1580, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Integrated light (IL) spectroscopy enables studies of stellar populations beyond the Milky Way and its nearest satellites. In this paper, I will review how IL spectroscopy reveals essential information about globular clusters and the assembly histories of their host galaxies, concentrating particularly on the metallicities and detailed chemical abundances of the GCs in M31. I will also briefly mention the effects of multiple populations on IL spectra, and how observations of distant globular clusters help constrain the source(s) of light-element abundance variations. I will end with future perspectives, emphasizing how IL spectroscopy can bridge the gap between Galactic and extragalactic astronomy.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

Present address: Department of Physics & Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132.

References

Bastian, N. & Lardo, C. 2018, ARA&A, 56, 83CrossRefGoogle Scholar
Caldwell, N., Harding, P., Morrison, H., et al. 2009, AJ, 137, 94CrossRefGoogle Scholar
Caldwell, N., Schiavon, R., Morrison, H., et al. 2011, AJ, 141, 61CrossRefGoogle Scholar
Caldwell, N. & Romanowsky, A. J. 2016, ApJ, 824, 42CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010, A&A, 516, A55Google Scholar
Colucci, J. E., Bernstein, R. A., Cameron, S., et al. 2009, ApJ, 704, 385CrossRefGoogle Scholar
Colucci, J. E., Fernanda Durán, M., Bernstein, R. A., et al. 2013, ApJ, 773, L36CrossRefGoogle Scholar
Colucci, J. E., Bernstein, R. A., & Cohen, J. G. 2014, ApJ, 797, 116CrossRefGoogle Scholar
Colucci, J. E., Bernstein, R. A., & McWilliam, A. 2017, ApJ, 834, 105CrossRefGoogle Scholar
Fardal, M. A., Weinberg, M. D., Babul, A., et al. 2013, MNRAS, 434, 2779CrossRefGoogle Scholar
Gilbert, K. M., Kalirai, J. S., Guhathakurta, P., et al. 2014, ApJ, 796, 76CrossRefGoogle Scholar
Hendricks, B., Boeche, C., Johnson, C. I., et al. 2016, A&A, 585, A86Google Scholar
Hubble, E. 1932, ApJ, 76, 44CrossRefGoogle Scholar
Ibata, R. A., Lewis, G. F., McConnachie, A. W., et al. 2014, ApJ, 780, 128CrossRefGoogle Scholar
Larsen, S. S., Brodie, J. P., & Strader, J. 2017, A&A, 601, A96Google Scholar
Larsen, S. S., Pugliese, G., & Brodie, J. P. 2018, A&A, 617, A119Google Scholar
Mackey, A. D., Ferguson, A. M. N., Huxor, A. P., et al. 2019, MNRAS, 484, 1756CrossRefGoogle Scholar
McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009, Nature, 461, 66CrossRefGoogle Scholar
McConnachie, A. W., Ibata, R., Martin, N., et al. 2018, ApJ, 868, 55CrossRefGoogle Scholar
McMonigal, B., Bate, N. F., Conn, A. R., et al. 2016, MNRAS, 456, 405CrossRefGoogle Scholar
McWilliam, A. & Bernstein, R. A. 2008, ApJ, 684, 326CrossRefGoogle Scholar
The MSE Science Team, Babusiaux, C., Bergemann, M., et al. 2019, arXiv e-prints, arXiv:1904.04907Google Scholar
Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, MNRAS, 367, 1329CrossRefGoogle Scholar
Sakari, C. M., Shetrone, M., Venn, K., McWilliam, A., & Dotter, A. 2013, MNRAS, 434, 358CrossRefGoogle Scholar
Sakari, C. M., Venn, K., Shetrone, M., Dotter, A., & Mackey, D. 2014, MNRAS, 443, 2285CrossRefGoogle Scholar
Sakari, C. M., Venn, K. A., Mackey, D., et al. 2015, MNRAS, 448, 1314CrossRefGoogle Scholar
Sakari, C. M. & Wallerstein, G. 2016, MNRAS, 456, 831CrossRefGoogle Scholar
Sakari, C. M., Shetrone, M. D., Schiavon, R. P., et al. 2016, ApJ, 829, 116CrossRefGoogle Scholar
Sakari, C. M., Placco, V. M., Farrell, E. M., et al. 2018, ApJ, 868, 110CrossRefGoogle Scholar
Schiavon, R. P., Faber, S. M., Castilho, B. V., et al. 2002, ApJ, 580, 850CrossRefGoogle Scholar
Schiavon, R. P., Faber, S. M., Rose, J. A., et al. 2002, ApJ, 580, 873CrossRefGoogle Scholar
Schiavon, R. P., Caldwell, N., & Rose, J. A. 2004, AJ, 127, 1513CrossRefGoogle Scholar
Schiavon, R. P., Caldwell, N., Conroy, C., et al. 2013, ApJ, 776, L7CrossRefGoogle Scholar
Strader, J., Caldwell, N., & Seth, A. C. 2011, AJ, 142, 8CrossRefGoogle Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371CrossRefGoogle Scholar
Veljanoski, J., Mackey, A. D., Ferguson, A. M. N., et al. 2014, MNRAS, 442, 2929CrossRefGoogle Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., et al. 2004, AJ, 128, 1177CrossRefGoogle Scholar
Wang, S., Ma, J., & Liu, J. 2019, A&A, 623, A65Google Scholar