Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T12:28:19.580Z Has data issue: false hasContentIssue false

Instrumental Selection Effect on the Bimodal T90 Distribution of Gamma-Ray Bursts

Published online by Cambridge University Press:  21 February 2013

Y. Qin
Affiliation:
Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004, China; [email protected]
E. W. Liang
Affiliation:
Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004, China; [email protected]
F. J. Virgili
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Birkenhead, CH41 1LD
B. Zhang
Affiliation:
Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004, China; [email protected] Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The durations (T90) of 315 GRBs detected with Fermi/GBM (8-1000 keV) by 2011 September are calculated using the Bayesian Block method. We compare the T90 distributions between this sample and that observed with previous/current GRB missions. We show that T90 is energy-band dependent and the observed bimodal T90 distribution would be due to the instrumental selection effect.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

Footnotes

Supported by the “973” Program of China (2009CB824800), the National Natural Science Foundation of China (Grants No. 11025313), and Special Foundation for Distinguished Expert Program of Guangxi, the Guangxi Natural Science Foundation (2010GXNSFC013011, Contract No. 2011-135), and the 3th Innovation Projet of Guangxi University. BZ acknowledges support from NSF (AST-0908362).

References

Frontera, F., Guidorzi, C., Montanari, E., et al. 2009, ApJS, 180, 192Google Scholar
Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJ, 413, 101CrossRefGoogle Scholar
, H. J., Liang, E. W., Zhang, B. B., & Zhang, B. 2010, ApJ, 725, 1965Google Scholar
Narayan, R., Piran, T., & Kumar, P. 2001, ApJ, 557, 949Google Scholar
Nakar, E. 2007, Phys. Rep., 442, 166Google Scholar
Paciesas, W. S., Meegan, C. A., Pendleton, G. N., et al. 1999, ApJS, 122, 465Google Scholar
Pélangeon, A., Atteia, J. L., Nakagawa, Y. E., et al. 2008, A&A, 491, 157Google Scholar
Scargle, J. D. 1998, ApJ, 504, 405Google Scholar
Sakamoto, T., Barthelmy, S. D., Baumgartner, W. H., et al. 2011, ApJS, 195, 2CrossRefGoogle Scholar
Savchenko, V., Neronov, A., & Courvoisier, T. J. L. 2012, A&A, 541, 122Google Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARA&A, 44, 507Google Scholar
Xin, L. P., Liang, E.-W., Wei, J.-Y., et al. 2011, Monthly Notices of the Royal Astronomical Society, 410, 27Google Scholar
Zhang, B. & Mészáros, P. 2004, International Journal of Modern Physics A, 19, 2385CrossRefGoogle Scholar
Zhang, B. 2006, Nature, 444, 1010Google Scholar
Zhang, B., Zhang, B. B., Liang, E. W., et al. 2007, ApJL, 655, L25Google Scholar
Zhang, B., Zhang, B. B., Virgili, F. J., et al. 2009, ApJ, 703, 1696Google Scholar