Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T12:54:55.096Z Has data issue: false hasContentIssue false

Insights into the Origin of the Galaxy Mass-Metallicity Relation

Published online by Cambridge University Press:  01 June 2008

Henry Lee
Affiliation:
Gemini Observatory, AURA Chile Colina El Pino s/n, La Serena, Chile email: [email protected]
Eric F. Bell
Affiliation:
Max-Planck-Institut für Astronomie Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Rachel S. Somerville
Affiliation:
Max-Planck-Institut für Astronomie Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine mass–metallicity relations for nearby (D < 2 Mpc) gas-rich and gas-poor dwarf galaxies. We derived stellar and baryonic masses using photometric data and used average stellar iron abundances as the metallicity indicator. With the inclusion of available data for massive galaxies, we find a continuous mass–metallicity relation for galaxies spanning nine orders of magnitude in mass, and that the mass–metallicity relations are the same for both gas-rich and gas-poor dwarf galaxies. We derive stellar effective yields from the stellar abundances, finding that gas-poor dwarf galaxies form a single sequence with mass, whereas gas-rich dwarf galaxies have higher yields at comparable mass. Simple chemical evolution models show that a mass-dependent star-formation efficiency can simultaneously account for the correlations between metallicity, gas fraction, and stellar effective yield with mass. In agreement with recent and independent results, we conclude that a key driver of the mass-metallicity relation is the variation of star-formation efficiency with galaxy mass, modulated by galaxy mass-dependent outflows and/or stellar IMF variations, and coupled with environmental gas-removal processes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bell, E. F. 2003, ApJ, 586, 794CrossRefGoogle Scholar
Bell, E. F. & de Jong, R. S. 2000, MNRAS, 312, 497CrossRefGoogle Scholar
Dalcanton, J. J. 2007, ApJ, 658, 941CrossRefGoogle Scholar
Ellison, S. L., Patton, D. R., Simard, L., & McConnachie, A. W. 2008, ApJ, 672, L107CrossRefGoogle Scholar
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41CrossRefGoogle Scholar
Grebel, E. K., Gallagher, J. S., & Harbeck, D. 2003, AJ, 125, 1926 (GGH03)CrossRefGoogle Scholar
Karachentsev, I. D., Karachentseva, V. E., Huchtmeier, W. K., & Kakarov, D. I. 2004, AJ, 127, 2031CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Lee, H., Skillman, E. D., Cannon, J. M., Jackson, D. C., Gehrz, R. D., Polomski, E. F., & Woodward, C. E. 2006, ApJ, 647, 970CrossRefGoogle Scholar
Lee, H., Bell, E. F., & Somerville, R. S. 2008, ApJ, submitted (LBS08)Google Scholar
Pagel, B. E. J. 1997, Nucleosynthesis and the Chemical Evolution of Galaxies (Cambridge: CUP)Google Scholar
Tremonti, C. A., et al. 2004, ApJ, 613, 898CrossRefGoogle Scholar
van Zee, L. 2001, AJ, 121, 2003CrossRefGoogle Scholar