Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T19:55:05.046Z Has data issue: false hasContentIssue false

The inner gaseous accretion disk around a Herbig Be star revealed by near- and mid-infrared spectro-interferometry

Published online by Cambridge University Press:  01 May 2007

S. Kraus
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Th. Preibisch
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
K. Ohnaka
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Herbig Ae/Be stars are pre-main-sequence stars of intermediate mass, which are still accreting material from their environment, probably via a disk composed of gas and dust. Here we present a recent study of the geometry of the inner (AU-scale) circumstellar region around the Herbig Be star MWC 147 using long-baseline interferometry. By combining for the first time near- and mid-infrared spectro-interferometry on a Herbig star, our VLTI/AMBER and VLTI/MIDI data constrain not only the geometry of the brightness distribution, but also the radial temperature distribution in the disk. The emission from MWC 147 is clearly resolved and has a characteristic physical size of ∼1.3 AU and ∼9 AU at 2.2 μm and 11 μm respectively. This increase in apparent size towards longer wavelengths is much steeper than predicted by analytic disk models assuming power-law radial temperature distributions. For a detailed modeling of the interferometric data and the spectral energy distribution of MWC 147, we employ 2-D frequency-dependent radiation transfer simulations. This analysis shows that passive irradiated Keplerian dust disks can easily fit the SED, but predict much lower visibilities than observed, so these models can clearly be ruled out. Models of a Keplerian disk with emission from an optically thick inner gaseous accretion disk (inside the dust sublimation zone), however, yield a good fit of the SED and simultaneously reproduce the observed near- and mid-infrared visibilities. We conclude that the near-infrared continuum emission from MWC 147 is dominated by accretion luminosity emerging from an optically thick inner gaseous disk, while the mid-infrared emission also contains strong contributions from the passive irradiated dust disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Akeson, R. L., Ciardi, D. R., van Belle, G. T., Creech-Eakman, M. J. & Lada, E. A. 2000, ApJ 543, 313Google Scholar
Dullemond, C. P., Dominik, C. & Natta, A. 2001, ApJ 560, 957Google Scholar
Eisner, J. A., Lane, B. F., Hillenbrand, L. A., Akeson, R. L. & Sargent, A. I. 2004, ApJ, 613, 1049Google Scholar
Hernández, J., Calvet, N., Briceño, C., Hartmann, L., Berlind, P. 2004, AJ 127, 1682Google Scholar
Hillenbrand, L. A., Strom, S. E., Vrba, F. J. & Keene, J. 1992, ApJ 397, 613CrossRefGoogle Scholar
Kraus, S., Preibisch, Th., Ohnaka, K. 2007, ApJ, submittedGoogle Scholar
Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603Google Scholar
Leinert, C., van Boekel, R., Waters, L. B. F. M., et al. , 2004 A&A, 423, 537Google Scholar
Men'shchikov, A. B., & Henning, T. 1997, A&A, 318, 879Google Scholar
Millan-Gabet, R., Schloerb, F. P., Traub, W. A. 2001, ApJ 546, 358CrossRefGoogle Scholar
Millan-Gabet, R., Malbet, F., Akeson, R., Leinert, C., Monnier, J., Waters, R. 2007, Protostars and Planets V, eds. Reipurth, B., Jewitt, D., Keil, K., University of Arizona Press, p. 539Google Scholar
Monnier, J. D. & Millan-Gabet, R. 2002, ApJ 579, 694Google Scholar
Monnier, J. D., Millan-Gabet, R., Billmeier, R., et al. , 2005, ApJ 624, 832Google Scholar
Muzerolle, J., D'Alessio, P., Calvet, N. & Hartmann, L. 2004, ApJ 617, 406Google Scholar
Natta, A., Prusti, T., Neri, R., Wooden, D., Grinin, V. P., & Mannings, V. 2001, A&A, 371, 186Google Scholar
Ohnaka, K., Driebe, T., Hofmann, K.-H., Leinert, C., Morel, S., Paresce, F., Preibisch, T., Richichi, A., Schertl, D., Schöller, M., Waters, L. B. F. M., Weigelt, G., Wittkowski, M. 2006, A&A 445, 1015Google Scholar
Preibisch, Th., Kraus, S., Driebe, T., van Boekel, R., Weigelt, G. 2006, A&A, 458, 235Google Scholar
Pringle, J. E. 1981, ARA&A, 19, 137Google Scholar
Polomski, E. F., Telesco, C. M., Piña, R., & Schulz, B. 2002, AJ, 464, 1Google Scholar