Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:12:36.965Z Has data issue: false hasContentIssue false

Initiation of Coronal Mass Ejections by Sunspot Rotation

Published online by Cambridge University Press:  06 January 2014

G. Valori
Affiliation:
LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France; email: [email protected]
T. Török
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd., Suite 170, San Diego, CA 92121, USA; email: [email protected]
M. Temmer
Affiliation:
IGAM/Kanzelhöhe Observatory, Institute of Physics, Universität Graz, Universitätsplatz 5, A-8010 Graz, Austria Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria
A. M. Veronig
Affiliation:
IGAM/Kanzelhöhe Observatory, Institute of Physics, Universität Graz, Universitätsplatz 5, A-8010 Graz, Austria
L. van Driel-Gesztelyi
Affiliation:
LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France; email: [email protected] University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary
B. Vršnak
Affiliation:
Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000 Zagreb, Croatia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report observations of a filament eruption, two-ribbon flare, and coronal mass ejection (CME) that occurred in Active Region NOAA 10898 on 6 July 2006. The filament was located South of a strong sunspot that dominated the region. In the evolution leading up to the eruption, and for some time after it, a counter-clockwise rotation of the sunspot of about 30 degrees was observed. We suggest that the rotation triggered the eruption by progressively expanding the magnetic field above the filament. To test this scenario, we study the effect of twisting the initially potential field overlying a pre-existing flux rope, using three-dimensional zero–β MHD simulations. We consider a magnetic configuration whose photospheric flux distribution and coronal structure is guided by the observations and a potential field extrapolation. We find that the twisting leads to the expansion of the overlying field. As a consequence of the progressively reduced magnetic tension, the flux rope quasi-statically adapts to the changed environmental field, rising slowly. Once the tension is sufficiently reduced, a distinct second phase of evolution occurs where the flux rope enters an unstable regime characterized by a strong acceleration. Our simulation thus suggests a new mechanism for the triggering of eruptions in the vicinity of rotating sunspots.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Amari, T. & Luciani, J. F. 1999, Astrophys. J. Lett. 515, L81.Google Scholar
Amari, T., Luciani, J. F., Aly, J. J. & Tagger, M. 1996, Astrophys. J. Lett. 466, L39.Google Scholar
Aulanier, G., Démoulin, P. & Grappin, R. 2005, Astron. Astrophys. 430, 1067.CrossRefGoogle Scholar
Aulanier, G., Pariat, E. & Démoulin, P. 2005, Astron. Astrophys. 444, 961.Google Scholar
Aulanier, G., Török, T., Démoulin, P. & DeLuca, E. E. 2010, Astrophys. J. 708, 314.CrossRefGoogle Scholar
Démoulin, P. & Aulanier, G. 2010, Astrophys. J. 718, 1388.Google Scholar
Démoulin, P., Henoux, J. C., Priest, E. R. & Mandrini, C. H. 1996, Astron. Astrophys. 308, 643.Google Scholar
Fan, Y. & Gibson, S. E. 2007, Astrophys. J. 668, 1232.Google Scholar
Gopalswamy, N., Yashiro, S., Kaiser, M. L., Howard, R. A. & Bougeret, J. L. 2001, Astrophys. J. Lett. 548, L91.Google Scholar
Green, L. M., Kliem, B., Török, T., van Driel-Gesztelyi, L. & Attrill, G. D. R. 2007, Solar Phys. 246, 365.CrossRefGoogle Scholar
Guo, J., Liu, Y., Zhang, H., Deng, Y., Lin, J. & Su, J. 2010, Astrophys. J. 711, 1057.Google Scholar
Kliem, B. & Török, T. 2006, Phys. Rev. Lett. 96 (25), 255002.Google Scholar
Kliem, B., Titov, V. S. & Török, T. 2004, Astron. Astrophys. 413, L23.Google Scholar
Panasenco, O., Martin, S., Joshi, A. D. & Srivastava, N. 2011, J. Atmos. Solar-Terr. Phys. 73, 1129.CrossRefGoogle Scholar
Santos, J. C., Büchner, J. & Otto, A. 2011, Astron. Astrophys. 535, A111.Google Scholar
Schatten, K. H., Wilcox, J. M. & Ness, N. F. 1969, Solar Phys. 6, 442.Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., Wolfson, C. J. & Zayer, I., MDI Engineering Team 1995, Solar Phys. 162, 129.Google Scholar
Schrijver, C. J., Elmore, C., Kliem, B., Török, T. & Title, A. M. 2008, Astrophys. J. 674, 586.CrossRefGoogle Scholar
Temmer, M., Veronig, A. M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S. & Maričić, D. 2008, Astrophys. J. Lett. 673, L95.Google Scholar
Titov, V. S. & Démoulin, P. 1999, Astron. Astrophys. 351, 707.Google Scholar
Török, T. & Kliem, B. 2003, Astron. Astrophys. 406, 1043.Google Scholar
Török, T. & Kliem, B. 2005, Astrophys. J. Lett. 630, L97.Google Scholar
Török, T. & Kliem, B. 2007, Astronom. Nachr. 328, 743.Google Scholar
Török, T., Kliem, B. & Titov, V. S. 2004, Astron. Astrophys. 413, L27.Google Scholar
Török, T., Panasenco, O., Titov, V. S., Mikić, Z., Reeves, K. K., Velli, M., Linker, J. A. & De Toma, G. 2011, Astrophys. J. Lett. 739, L63.Google Scholar
Török, T., Temmer, M., Valori, G., Veronig, A. M., van Driel-Gesztelyi, L. & Vršnak, B. 2013, Solar Phys. 286, 453. referred to as Paper IGoogle Scholar
Williams, D. R., Török, T., Démoulin, P., van Driel-Gesztelyi, L. & Kliem, B. 2005, Astrophys. J. Lett. 628, L163.Google Scholar
Yang, J., Jiang, Y., Yang, B., Zheng, R., Yang, D., Hong, J., Li, H. & Bi, Y. 2012, Solar Phys. 279, 115.CrossRefGoogle Scholar