Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T14:27:21.091Z Has data issue: false hasContentIssue false

The initial luminosity and mass functions of Galactic open clusters

Published online by Cambridge University Press:  01 June 2008

Hans Zinnecker
Affiliation:
Astrophysical Institute Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected], [email protected]
Anatoly E. Piskunov
Affiliation:
Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya St. 119017, Moscow, Russia email: [email protected]
Nina V. Kharchenko
Affiliation:
Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine email: [email protected]
Siegfried Röser
Affiliation:
Ruprecht-Karls-Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12 – 14, D-69120 Heidelberg, Germany email: [email protected], [email protected]
Elena Schilbach
Affiliation:
Ruprecht-Karls-Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12 – 14, D-69120 Heidelberg, Germany email: [email protected], [email protected]
Ralf-Dieter Scholz
Affiliation:
Astrophysical Institute Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have derived a complete magnitude-limited sample of 440 Galactic open clusters in the solar neighborhood, with integrated V-magnitude brighter than 8 mag. This sample can be used to infer the present-day luminosity and mass functions of open clusters up to a given age; it can even be used to construct the initial mass and luminosity function (IMF, ILF) of clusters (defined as visible clusters with age 4 – 8 Myr). The high-mass end of the cluster IMF is a power-law with a slope of −2 or slightly shallower (−1.7) while the luminous cluster ILF has a power-slope of −1, in agreement with what is found for extragalactic clusters. Both distribution functions show a turnover, starting at 300 M and integrated magnitude −3 mag, respectively. The overall birthrate of clusters is 0.4 clusters per kpc2 and per Myr. The average present-day cluster mass is 700 M, while the average initial cluster mass is 4500 M. The difference of these two average masses indicates the high infant mortality and/or weight loss of Galactic open clusters (due to dynamical evolution).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Adams, F. C. & Myers, P. C. 2001, ApJ, 553, 744CrossRefGoogle Scholar
Battinelli, P. & Capuzzo-Dolcetta, R. 1991, MNRAS, 249, 76CrossRefGoogle Scholar
Becker, W. & Fenkart, R. 1971, A&AS, 4, 241Google Scholar
Bhatt, B. C., Pandey, A. K., & Mahra, H. S. 1991, JApA, 12, 179Google Scholar
Bica, E., Dutra, C. M., & Barbuy, B. 2003a, A&A, 397, 177Google Scholar
Bica, E., Dutra, C. M., Soares, J., & Barbuy, B. 2003b, A&A, 404, 223Google Scholar
Dias, W. S., Alessi, B. S., Moitinho, A., & Lépine, J. R. D. 2002, A&A, 389, 871Google Scholar
Elmegreen, B. G. & Clemens, C. 1985, ApJ, 294, 523CrossRefGoogle Scholar
Flynn, C., Holmberg, J., Portinari, L., Fuchs, B., & Jahreiss, H. 2006, MNRAS, 372, 1149CrossRefGoogle Scholar
Froebrich, D., Scholz, A., & Raftery, C. L. 2007, MNRAS, 374, 399CrossRefGoogle Scholar
Geller, A. M., Mathieu, R. D., Harris, H. C., & McClure, R. D. 2008, AJ, 135, 2264CrossRefGoogle Scholar
Gies, D. R. 1987, ApJS, 64, 545CrossRefGoogle Scholar
Janes, K. A., Tilley, C., & Lynga, G. 1988, AJ, 95, 771CrossRefGoogle Scholar
Kharchenko, N. V. 2001, Kinematics and Physics of Celestial Bodies, 17, 409Google Scholar
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E. & Scholz, R.-D. 2005a, A&A, 438, 1163Google Scholar
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2005b, A&A, 440, 403Google Scholar
King, I. 1962, AJ, 67, 471CrossRefGoogle Scholar
Lada, C. J. & Lada, E.A., 2003, ARAA, 41, 57CrossRefGoogle Scholar
Larsen, S. S. 2002, AJ, 124, 1393CrossRefGoogle Scholar
Lata, S., Pandey, A. K., Sagar, R., & Mohan, V. 2002, A&A, 388, 158Google Scholar
Lyngå, G. 1987, ESO Conf. Workshop Proc., 28, 379Google Scholar
Maíz-Apellániz, J., Walborn, N. R., Galué, H. Á., & Wei, L. H. 2004, ApJS, 151, 103CrossRefGoogle Scholar
Miller, G. E. & Scalo, J. M. 1978, PASP, 90, 506CrossRefGoogle Scholar
Piskunov, A. E.Kharchenko, N. V., Röser, S., Schilbach, E. & Scholz, R.-D. 2006, A&A, 445, 545Google Scholar
Piskunov, A. E., Schilbach, E., Kharchenko, N. V., Röser, S., & Scholz, R.-D. 2007, A&A, 468, 151Google Scholar
Piskunov, A. E., Schilbach, E., Kharchenko, N. V., Röser, S., & Scholz, R.-D. 2008a, A&A 477, 165Google Scholar
Piskunov, A. E., Kharchenko, N. V., Schilbach, E., Röser, S., Scholz, R.-D., & Zinnecker, H. 2008b, A&A, acceptedGoogle Scholar
Schilbach, E. & Röser, S. 2008, A&A, acceptedGoogle Scholar
Scalo, J. 1998, The Stellar Initial Mass Function (38th Herstmonceux Conference) eds. Gilmore, G. and Howell, D.. ASP Conference Series, Vol. 142, 1998, p.201Google Scholar
Sota, A., Maíz-Apellániz, J., Walborn, N. R., & Shida, R. Y. 2007, astro-ph/0703005Google Scholar
van den Bergh, S. & Lafontaine, A. 1984, AJ, 89, 1822CrossRefGoogle Scholar
Wielen, R. 1971, A&A, 13, 309Google Scholar