Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T02:47:03.524Z Has data issue: false hasContentIssue false

The infrared environment of methanol maser rings at high spatial resolution

Published online by Cambridge University Press:  24 July 2012

James M. De Buizer
Affiliation:
SOFIA-USRA, NASA Ames Research Center, Moffett Field, CA 94035, USA email: [email protected]
Anna Bartkiewicz
Affiliation:
Toruń Centre for Astronomy, Nicolas Copernicus University, Gagarina 11, 87-100, Toruń, Poland
Marian Szymczak
Affiliation:
Toruń Centre for Astronomy, Nicolas Copernicus University, Gagarina 11, 87-100, Toruń, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The recent discovery of methanol maser emission coming from ring-like distributions has led to the plausible hypothesis that they may be tracing circumstellar disks around forming high mass stars. In this article we discuss the distribution of circumstellar material around such young and massive accreting (proto)stars, and what infrared emission geometries would be expected for different disk/outflow orientations. For four targets we then compare the expected infrared geometries (as inferred from the properties of the maser rings) with actual high spatial resolution near-infrared and mid-infrared images. We find that the observed infrared emission geometries are not consistent with the masers residing in circumstellar disks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Alvarez, C., Hoare, M., & Lucas, P. 2004, A&A, 419, 203Google Scholar
Bartkiewicz, A., Szymczak, M., van Langevelde, H. J., Richards, A. M. S., & Pihlström, Y. M. 2009, A&A, 502, 155Google Scholar
Chini, R., Hoffmeister, V., Kimeswenger, S., et al. 2004, Nature, 429, 155CrossRefGoogle Scholar
Cotera, A. S., Whitney, B. A., Young, E., et al. 2001, ApJ, 556, 958CrossRefGoogle Scholar
Cragg, D. M., Sobolev, A. M., & Godfrey, P. D. 2002, MNRAS, 331, 521CrossRefGoogle Scholar
De Buizer, J. M. 2006, ApJL, 642, L57CrossRefGoogle Scholar
De Buizer, J. M., Piña, R. K., & Telesco, C. M. 2000, ApJS, 130, 437CrossRefGoogle Scholar
De Buizer, J. M., Walsh, A. J., Piña, R. K., Phillips, C. J., & Telesco, C. M. 2002, ApJ, 564, 327CrossRefGoogle Scholar
Jayawardhana, R., Fisher, R. S., Hartmann, L., et al. 1998, ApJL, 503, L79CrossRefGoogle Scholar
McCaughrean, M. J. & O'Dell, C. R. 1996, AJ, 111, 1977CrossRefGoogle Scholar
Norris, R. P., Whiteoak, J. B., Caswell, J. L., Wieringa, M. H., & Gough, R. G. 1993, ApJ, 412, 222CrossRefGoogle Scholar
Povich, M. S. & Whitney, B. A. 2010, ApJl, 714, L285CrossRefGoogle Scholar
Sako, S., Yamashita, T., Kataza, H., et al. 2005, Nature, 434, 995CrossRefGoogle Scholar
Shu, F. H. & Adams, F. C. 1987, IAUS, 122, 7Google Scholar
Stecklum, B. & Kaufl, H. 1998, ESO Press Release, PR 08/98Google Scholar
Telesco, C. M., Decher, R., Becklin, E. E., & Wolstencroft, R. D. 1988, Nature, 335, 51CrossRefGoogle Scholar
Zhang, Y. & Tan, J. C. 2011, ApJ, 733, 55CrossRefGoogle Scholar