Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-10-02T14:12:42.894Z Has data issue: false hasContentIssue false

Infrared appearance of wind-blown bubbles around young massive stars

Published online by Cambridge University Press:  20 January 2023

Maria S. Kirsanova
Affiliation:
Institute of Astronomy, Russian Academy of Sciences, 119017, 48 Pyatnitskaya str., Moscow, Russia email: [email protected]
Yaroslav N. Pavlyuchenkov
Affiliation:
Institute of Astronomy, Russian Academy of Sciences, 119017, 48 Pyatnitskaya str., Moscow, Russia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thousands of ring-like bubbles appear on infrared images of the Galaxy plane. Most of these infrared bubbles form during expansion of Hii regions around massive stars. However, the physical effects that determine their morphology are still under debate. Namely, the absence of the infrared emission toward the centres of the bubbles can be explained by pushing the dust grains by stellar radiation pressure. At the same time, small graphite grains and PAHs are not strongly affected by the radiation pressure and must be removed by another process. Stellar ultraviolet emission can destroy the smallest PAHs but the photodestruction is ineffective for the large PAHs. Meanwhile, the stellar wind can evacuate all types of grains from Hii regions. In the frame of our chemo-dynamical model we vary parameters of the stellar wind and illustrate their influence on the morphology and synthetic infrared images of the bubbles.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Akimkin, V. V., Kirsanova, M. S., Pavlyuchenkov, Ya. N., Wiebe, D. S. 2015, MNRAS, 449, 440 CrossRefGoogle Scholar
Akimkin, V. V., Kirsanova, M. S., Pavlyuchenkov, Ya. N., Wiebe, D. S. 2017, MNRAS, 469, 630 CrossRefGoogle Scholar
Anderson, L. D., Zavagno, A., Deharveng, L., Abergel, A., Motte, F., André, P., Bernard, J.-P., et al., 2012, A&A, 542, A10.Google Scholar
Anderson, L. D., Bania, T. M., Balser, D. S., Cunningham, V., Wenger, T. V., Johnstone, B. M., Armentrout, W. P. 2014, ApJS, 212, 1.Google Scholar
Churchwell, E., Povich, M. S., Allen, D., Taylor, M. G., Meade, M. R., Babler, B. L., Indebetouw, R., et al. 2006, ApJ, 649, 759 CrossRefGoogle Scholar
Deharveng, L., Schuller, F., Anderson, L. D., Zavagno, A., Wyrowski, F., Menten, K. M., Bronfman, L., et al. 2010, A&A, 523, A6 Google Scholar
Gvaramadze, V. V., Kniazev, A. Y., Fabrika, S., 2010, MNRAS, 405, 1047.Google Scholar
Luisi, M., Anderson, L. D., Schneider, N., Simon, R., Kabanovic, S., Güsten, R., Zavagno, A., et al., 2021, SciA, 7, eabe9511 Google Scholar
Molinari, S., Swinyard, B., Bally, J., Barlow, M., Bernard, J.-P., Martin, P., Moore, T., et al., 2010, A&A, 518, L100 Google Scholar
Pabst, C., Higgins, R., Goicoechea, J. R., Teyssier, D., Berne, O., Chambers, E., Wolfire, M., et al., 2019, Nature, 565, 618 CrossRefGoogle Scholar
Pavlyuchenkov, Ya. N., Kirsanova, M. S., Wiebe, D. S. 2013, ARep, 57, 573 Google Scholar
Simpson, R. J., Povich, M. S., Kendrew, S., Lintott, C. J., Bressert, E., Arvidsson, K., Cyganowski, C., et al., 2012, MNRAS, 424, 2442.CrossRefGoogle Scholar
Murga, M. S., Kirsanova, M. S., Wiebe, D. S., Boley, P. A. 2022, MNRAS, 509, 800 Google Scholar
Wachter, S., Mauerhan, J. C., Van Dyk, S. D., Hoard, D. W., Kafka, S., Morris, P. W., 2010, AJ, 139, 2330. CrossRefGoogle Scholar