Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T03:01:03.341Z Has data issue: false hasContentIssue false

Information Gains in Cosmological Parameter Estimation

Published online by Cambridge University Press:  01 July 2015

Sebastian Seehars
Affiliation:
ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland email: [email protected]
Adam Amara
Affiliation:
ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
Alexandre Refregier
Affiliation:
ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
Aseem Paranjape
Affiliation:
ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
Joël Akeret
Affiliation:
ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Combining datasets from different experiments and probes to constrain cosmological models is an important challenge in observational cosmology. We summarize a framework for measuring the constraining power and the consistency of separately or jointly analyzed data within a given model that we proposed in earlier work (Seehars et al.2014). Applying the Kullback-Leibler divergence to posterior distributions, we can quantify the difference between constraints and distinguish contributions from gains in precision and shifts in parameter space. We show results from applying this technique to a combination of datasets and probes such as the cosmic microwave background or baryon acoustic oscillations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Akeret, J., Seehars, S., Amara, A., Refregier, A., & Csillaghy, A. 2013 Astron. Comput., 2, 27CrossRefGoogle Scholar
Bennett, C L, Larson, D, Weiland, J L, & Jarosik, N 2013 ApJS, 208 (2), 54Google Scholar
Chaloner, K, & Verdinelli, I 1995 Statist. Sci., 10, 273CrossRefGoogle Scholar
Duchesne, P, & De Micheaux, P L 2010 Comput. Stat. Data Anal., 54 (4), 858Google Scholar
Hinshaw, G, Larson, D, Komatsu, E, Spergel, D N, Bennett, C L, Dunkley, J, Nolta, M R, Halpern, M, Hill, R S, Odegard, N, Page, L, Smith, K M, Weiland, J L, Gold, B, Jarosik, N, Kogut, A, Limon, M, Meyer, S S, Tucker, G S, Wollack, E, & Wright, E L 2013 ApJS, 208 (2), 19CrossRefGoogle Scholar
William, C, PAR Ade, Jones, Bock, J J, Bond, J R, Borrill, J, Boscaleri, A, Cabella, P, Contaldi, C R, Crill, B P, & De Bernardis, P 2006 ApJ, 647 (2), 823Google Scholar
Kullback, S, & Leibler, R A 1951 Ann. Math. Stat., 22 (1), 79CrossRefGoogle Scholar
Planck collaboration, Ade, P A R, Aghanim, N, Armitage-Caplan, C, Arnaud, M, Ashdown, M, Atrio-Barandela, F, Aumont, J, Baccigalupi, C, Banday, A J, et al. 2013 arXiv, 1303.5075Google Scholar
Seehars, S, Amara, A, Refregier, A, Paranjape, A, & Akeret, J 2014 arXiv, 1402.3593Google Scholar
Skilling, J 2004 AIP Conference Proceedings, 735 (1), 395Google Scholar