Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T09:01:35.801Z Has data issue: false hasContentIssue false

The influence of collimation on the appearance of relativistic jets

Published online by Cambridge University Press:  24 February 2011

Pierre-Olivier Petrucci
Affiliation:
Laboratoire d'Astrophysique de GrenOble, Université Joseph Fourier - Grenoble 1 / CNRS UMR 5571, BP 53, 38041 Grenoble Cedex 09, France email: [email protected]
Timothe Boutelier
Affiliation:
Laboratoire d'Astrophysique de GrenOble, Université Joseph Fourier - Grenoble 1 / CNRS UMR 5571, BP 53, 38041 Grenoble Cedex 09, France email: [email protected]
Gilles Henri
Affiliation:
Laboratoire d'Astrophysique de GrenOble, Université Joseph Fourier - Grenoble 1 / CNRS UMR 5571, BP 53, 38041 Grenoble Cedex 09, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The question of the collimation of relativistic jets is the subject of a lively debate in the community. We numerically compute the apparent velocity and the Doppler factor of a non homokinetic jet using different velocity profile, to study the effect of collimation on the appearance of relativistic jets (apparent velocity and Doppler factor). We argue that if the motion is relativistic, the high superluminal velocity are possible only if the geometrical collimation is smaller than the relativistic beaming angle γ−1. In the opposite case, the apparent image will be dominated by the part of the jet traveling directly towards the observer resulting in no apparent velocity. Furthermore, getting rid of the homokinetic hypothesis yields a complex relation between the observing angle and the Doppler factor, resulting in important consequences for the numerical computation of AGN population and unification scheme model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Boutelier, T., Henri, G., & Petrucci, P.-O., 2010, A&A, submittedGoogle Scholar
Casse, F. & Keppens, R. 2002, ApJ, 581, 988CrossRefGoogle Scholar
Dougados, C., Cabrit, S., Ferreira, J., et al. 2004, Astrophysics and Space Science, 293, 45CrossRefGoogle Scholar
Ferreira, J. 1997, A&A, 319, 340Google Scholar
Gopal-Krishna, , Dhurde, S., & Wiita, P. J. 2004, ApJ, 615, L81CrossRefGoogle Scholar
Gopal-Krishna, , Sircar, P., & Dhurde, S. 2007, A&A, 28, 29Google Scholar
Gopal-Krishna, , Wiita, P. J., & Dhurde, S. 2006, MNRAS, 369, 1287Google Scholar
Hawley, J. F. & Krolik, J. H. 2006, ApJ, 641, 103.CrossRefGoogle Scholar
Horiuchi, S., Meier, D. L., Preston, R. A., & Tingay, S. J. 2006, PASJ, 58, 211CrossRefGoogle Scholar
Junor, W., Biretta, J. A., & Livio, M. 1999, Nature, 401, 891CrossRefGoogle Scholar
McKinney, J. C. 2006, MNRAS, 368, 1561CrossRefGoogle Scholar
Zanni, C., Ferrari, A., Rosner, R., Bodo, G., & Massaglia, S. 2007, A&A, 469, 811Google Scholar