Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T07:31:58.664Z Has data issue: false hasContentIssue false

Inferring the chromospheric magnetic topology through waves

Published online by Cambridge University Press:  01 September 2007

S. S. Hasan
Affiliation:
Indian Institute of Astrophysics, Bangalore, India, email: [email protected]
O. Steiner
Affiliation:
Kiepenheuer Institut für Sonnenphysik, Freiburg, Germany
A. van Ballegooijen
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this work is to examine the hypothesis that the wave propagation time in the solar atmosphere can be used to infer the magnetic topography in the chromosphere as suggested by Finsterle et al. (2004). We do this by using an extension of our earlier 2-D MHD work on the interaction of acoustic waves with a flux sheet. It is well known that these waves undergo mode transformation due to the presence of a magnetic field which is particularly effective at the surface of equipartition between the magnetic and thermal energy density, the β = 1 surface. This transformation depends sensitively on the angle between the wave vector and the local field direction. At the β = 1 interface, the wave that enters the flux sheet, (essentially the fast mode) has a higher phase speed than the incident acoustic wave. A time correlation between wave motions in the non-magnetic and magnetic regions could therefore provide a powerful diagnostic for mapping the magnetic field in the chromospheric network.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bogdan, T.J. et al. Carlsson, M.Hansteen, V., McMurry, A., Rosenthal, C. S. et al. 2003, ApJ, 599, 626CrossRefGoogle Scholar
De Pontieu, B., Erdélyi, R., James, S.P. 2004, Nature, 430, 536CrossRefGoogle Scholar
De Pontieu, B., Erdélyi, R. 2006, Phil. Trans Roy. Soc. A., 364, 383CrossRefGoogle Scholar
Finsterle, W., Jeffries, S. M., Cacciani, A., Rapex, P., McIntosh, S. W. 2004, ApJ, 613, L185CrossRefGoogle Scholar
Hasan, S.S., Kalkofen, W., van Ballegoiijen, A.A.Steiner, O. 2005, ApJ, 631, 1270CrossRefGoogle Scholar
Pintér, B., Erdélyi, R., Goossens, M. 2007, Astron. Astrophys, 466, 377CrossRefGoogle Scholar
Rosenthal, C.S., Bogdan, T. J., Carlsson, M., Dorch, S. B. F., Hansteen, et al. 2002, ApJ, 564, 508CrossRefGoogle Scholar
Steiner, O., Knölker, M. & Schüssler, M. 1994, in: Rutten, R. J. & Schrijver, C. J. (eds.), Solar Surface Magnetism, NATO ASI Ser. C-433 (Dordrecht: Kluwer), 441CrossRefGoogle Scholar
Steiner, O., Vigeesh, G., Krieger, S., Wedemeyer-Böhm, , Schaffenberger, W. et al. 2007, Astronomical Notes, 328, 323Google Scholar