Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T00:29:27.706Z Has data issue: false hasContentIssue false

Incidence of stellar rotation on the explosion mechanism of massive stars

Published online by Cambridge University Press:  17 October 2017

Rémi Kazeroni
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany email: [email protected] 2 Laboratoire AIM, CEA/DRF-CNRS-Université Paris Diderot, IRFU/Département d’Astrophysique, CEA-Saclay, F-91191, France
Jérôme Guilet
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany email: [email protected] 2
Thierry Foglizzo
Affiliation:
Laboratoire AIM, CEA/DRF-CNRS-Université Paris Diderot, IRFU/Département d’Astrophysique, CEA-Saclay, F-91191, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrodynamical instabilities may either spin-up or down the pulsar formed in the collapse of a rotating massive star. Using numerical simulations of an idealized setup, we investigate the impact of progenitor rotation on the shock dynamics. The amplitude of the spiral mode of the Standing Accretion Shock Instability (SASI) increases with rotation only if the shock to the neutron star radii ratio is large enough. At large rotation rates, a corotation instability, also known as low-T/W, develops and leads to a more vigorous spiral mode. We estimate the range of stellar rotation rates for which pulsars are spun up or down by SASI. In the presence of a corotation instability, the spin-down efficiency is less than 30%. Given observational data, these results suggest that rapid progenitor rotation might not play a significant hydrodynamical role in the majority of core-collapse supernovae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bethe, H. A. & Wilson, J. R. 1985, ApJ, 295, 14 CrossRefGoogle Scholar
Blondin, J. M. & Mezzacappa, A. 2006, ApJ, 642, 401 CrossRefGoogle Scholar
Blondin, J. M. & Mezzacappa, A. 2007, Nature, 445, 58 CrossRefGoogle Scholar
Blondin, J. M., Mezzacappa, A. & DeMarino, C. 2003, ApJ, 584, 971 CrossRefGoogle Scholar
Blondin, J. M., Gipson, E., Harris, S. & Mezzacappa, A. 2017, ApJ, 835, 170 CrossRefGoogle Scholar
Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton, B. 2014, ApJ, 788, 93 CrossRefGoogle Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332 CrossRefGoogle Scholar
Fernández, R. 2010, ApJ, 725, 1563 CrossRefGoogle Scholar
Foglizzo, T., Scheck, L. & Janka, H.-T. 2006, ApJ, 652, 1436 CrossRefGoogle Scholar
Foglizzo, T., Galletti, P., Scheck, L. & Janka, H.-T. 2007, ApJ, 654, 1006 CrossRefGoogle Scholar
Foglizzo, T., Masset, F., Guilet, J., & Durand, G. 2012, Phys. Rev. Lett., 108, 051103 CrossRefGoogle Scholar
Foglizzo, T., et al. 2015, PASA, 32, 9 CrossRefGoogle Scholar
Guilet, J. & Fernández, R. 2014, MNRAS, 441, 2782 CrossRefGoogle Scholar
Guilet, J. & Foglizzo, T. 2012, MNRAS, 421, 546 Google Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350 CrossRefGoogle Scholar
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339 CrossRefGoogle Scholar
Iwakami, W., Nagakura, H. & Yamada, S. 2014, ApJ, 793, 5 CrossRefGoogle Scholar
Janka, H.-T., Melson, T. & Summa, A. 2016, Annual Review of Nuclear and Particle Science, 66, 341 CrossRefGoogle Scholar
Kazeroni, R., Guilet, J. & Foglizzo, T. 2016, MNRAS, 456, 126 CrossRefGoogle Scholar
Kazeroni, R., Guilet, J. & Foglizzo, T., 2017, arXiv, 1701.07029Google Scholar
Kuroda, T., Takiwaki, T. & Kotake, K. 2014, Phys. Rev. D, 89, 044011 CrossRefGoogle Scholar
Nakamura, K., Kuroda, T., Takiwaki, T. & Kotake, K. 2014, ApJ, 793, 45 CrossRefGoogle Scholar
Passamonti, A. & Andersson, N. 2015, MNRAS, 446, 555 CrossRefGoogle Scholar
Popov, S. B. & Turolla, R. 2012, Ap&SS, 341, 457 Google Scholar
Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K. & Müller, E. 2004, Phys. Rev. Lett., 92, 011103 CrossRefGoogle Scholar
Scheck, L., Kifonidis, K., Janka, H.-T., & Müller, E. 2006, A&A, 457, 963 Google Scholar
Takiwaki, T., Kotake, K. & Suwa, Y. 2016, MNRAS, 461, L112 CrossRefGoogle Scholar
Watts, A. L., Andersson, N. & Jones, D. I. 2005, ApJL, 618, L37 CrossRefGoogle Scholar
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2010, ApJL, 725, L106 CrossRefGoogle Scholar
Yamasaki, T. & Foglizzo, T. 2008, ApJ, 679, 607 CrossRefGoogle Scholar