Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T13:09:22.907Z Has data issue: false hasContentIssue false

The importance of the diffuse ionized gas for interpreting galaxy spectra

Published online by Cambridge University Press:  29 March 2021

Natalia Vale Asari
Affiliation:
Departamento de Física - CFM - Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil email: [email protected] School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Grażyna Stasińska
Affiliation:
LUTH, Observatoire de Paris, PSL, CNRS 92190 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Diffuse ionized gas (DIG) in galaxies can be found in early-type galaxies, in bulges of late-type galaxies, in the interarm regions of galaxy disks, and outside the plane of such disks. The emission-line spectrum of the DIG can be confused with that of a weakly active galactic nucleus. It can also bias the inference of chemical abundances and star formation rates in star forming galaxies. We discuss how one can detect and feasibly correct for the DIG contribution in galaxy spectra.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

Royal Society–Newton Advanced Fellowship

References

Athey, A. E. & Bregman, J. N., 2009, ApJ, 696, 681 10.1088/0004-637X/696/1/681CrossRefGoogle Scholar
Bacon, R., et al. 2010, SPIE, 7735, 773508, SPIE.7735Google Scholar
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5 10.1086/130766CrossRefGoogle Scholar
Belfiore, F., et al. 2016, MNRAS, 461, 3111 10.1093/mnras/stw1234CrossRefGoogle Scholar
Blanc, G. A., Heiderman, A., Ge bhardt, K., et al. 2009, ApJ, 704, 842 10.1088/0004-637X/704/1/842CrossRefGoogle Scholar
Blanton, M. R., et al. 2017, AJ, 154, 28 10.3847/1538-3881/aa7567CrossRefGoogle Scholar
Binette, L., Magris, C. G., Stasińska, G., et al. 1994, A&A, 292, 13 Google Scholar
Binette, L., Flores-Fajardo, N., Raga, A. C., et al. 2009, ApJ, 695, 552 10.1088/0004-637X/695/1/552CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151 10.1111/j.1365-2966.2004.07881.xCrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000 10.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 763 10.1086/376392CrossRefGoogle Scholar
Cid Fernandes, R., Mateus, A., Sodré, L., et al. 2005, MNRAS, 358, 363 10.1111/j.1365-2966.2005.08752.xCrossRefGoogle Scholar
Cid Fernandes, R., Stasińska, G., Mateus, A., et al. 2011, MNRAS, 413, 1687 10.1111/j.1365-2966.2011.18244.xCrossRefGoogle Scholar
Collins, J. A. & Rand, R. J. 2001, ApJ, 551, 57 10.1086/320072CrossRefGoogle Scholar
Della Bruna, L., et al. 2020, A&A, 635, A134 Google Scholar
den Brok, M., et al. 2020, MNRAS, 491, 4089 10.1093/mnras/stz3184CrossRefGoogle Scholar
Dettmar, R.-J. 1990, A&A, 232, L15 Google Scholar
Domgorgen, H. & Mathis, J. S. 1994, ApJ, 428, 647 10.1086/174275CrossRefGoogle Scholar
Dopita, M. A., Sutherland, R. S., Nicholls, D. C., et al. 2013, ApJS, 208, 10 10.1088/0067-0049/208/1/10CrossRefGoogle Scholar
Flores-Fajardo, N., Morisset, C., Stasińska, G., et al. 2011, MNRAS, 415, 2182 10.1111/j.1365-2966.2011.18848.xCrossRefGoogle Scholar
Galarza, V. C., Walterbos, R. A. M., & Braun, R. 1998, A&AS, 192, 40.07Google Scholar
Gomes, J. M., et al. 2016, A&A, 588, A68 Google Scholar
Haffner, L. M., Dettmar, R.-J., Beckman, J. E., et al. 2009, Reviews of Modern Physics, 81, 969 10.1103/RevModPhys.81.969CrossRefGoogle Scholar
Heckman, T. M. 1980, A&A, 500, 187 Google Scholar
Hoopes, C. G., Walterbos, R. A. M., & Rand, R. J. 1999, ApJ, 522, 669 10.1086/307670CrossRefGoogle Scholar
Hoopes, C. G., Walterbos, R. A. M., & Greenwalt, B. E. 1996, AJ, 112, 1429 10.1086/118111CrossRefGoogle Scholar
Jaffé, Y. L., et al. 2014, MNRAS, 440, 3491 10.1093/mnras/stu507CrossRefGoogle Scholar
Johansson, J., Woods, T. E., Gilfanov, M., et al. 2016, MNRAS, 461, 4505 CrossRefGoogle Scholar
Kaplan, K. F., et al. 2016, MNRAS, 462, 1642 10.1093/mnras/stw1422CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, MNRAS, 346, 1055 10.1111/j.1365-2966.2003.07154.xCrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., et al. 2001, ApJ, 556, 121 CrossRefGoogle Scholar
Kewley, L. J., Groves, B., Kauffmann, G., et al. 2006, MNRAS, 372, 961 10.1111/j.1365-2966.2006.10859.xCrossRefGoogle Scholar
Kewley, L. J., Nicholls, D. C., Sutherland, R. S., et al. 2019, ARAA, 57, 511 10.1146/annurev-astro-081817-051832CrossRefGoogle Scholar
Kreckel, K., Blanc, G. A., Schinnerer, E., et al. 2016, ApJ, 827, 103 10.3847/0004-637X/827/2/103CrossRefGoogle Scholar
Kumari, N., Maiolino, R., Belfiore, F., et al. 2019, MNRAS, 485, 367 10.1093/mnras/stz366CrossRefGoogle Scholar
Lacerda, E. A. D., et al. 2018, MNRAS, 474, 3727 10.1093/mnras/stx3022CrossRefGoogle Scholar
Maiolino, R. & Mannucci, F. 2019, AARv, 27, 3 Google Scholar
Mannucci, F., Cresci, G., Maiolino, R., et al. 2010, MNRAS, 408, 2115 10.1111/j.1365-2966.2010.17291.xCrossRefGoogle Scholar
Martel, A. R., et al. 2004, AJ, 128, 2758 10.1086/425628CrossRefGoogle Scholar
Minter, A. H. & Balser, D. S. 1997, ApJL, 484, L133 10.1086/310788CrossRefGoogle Scholar
Minter, A. H. & Spangler, S. R. 1997, ApJ, 485, 182 10.1086/304396CrossRefGoogle Scholar
Oey, M. S., Meurer, G. R., Yelda, S., et al. 2007, ApJ, 661, 801 10.1086/517867CrossRefGoogle Scholar
Phillips, M. M., Jenkins, C. R., Dopita, M. A., et al. 1986, AJ, 91, 1062 10.1086/114083CrossRefGoogle Scholar
Poetrodjojo, H., et al. 2019, MNRAS, 487, 79 10.1093/mnras/stz1241CrossRefGoogle Scholar
Reynolds, R. J. 1971, Ph.D. Thesis Google Scholar
Reynolds, R. J. 1989, ApJL, 339, L29. doi: 10.1086/185412 CrossRefGoogle Scholar
Reynolds, R. J. & Cox, D. P. 1992, ApJl, 400, L33 CrossRefGoogle Scholar
Sánchez, S. F., et al. 2016, A&A, 594, A36 Google Scholar
Sarzi, M., et al. 2010, MNRAS, 402, 2187 10.1111/j.1365-2966.2009.16039.xCrossRefGoogle Scholar
Slavin, J. D., McKee, C. F., Hollenbach, D. J., et al. 2000, ApJ, 541, 218 10.1086/309409CrossRefGoogle Scholar
Stasińska, G., Cid Fernandes, R., Mateus, A., et al. 2006, MNRAS, 371, 972 10.1111/j.1365-2966.2006.10732.xCrossRefGoogle Scholar
Stasińska, G., Vale Asari, N., Cid Fernandes, R., et al. 2008, MNRAS, 391, L29 CrossRefGoogle Scholar
Tremonti, C. A., et al. 2004, ApJ, 613, 898 CrossRefGoogle Scholar
Vale Asari, N., et al. 2019, MNRAS, 489, 4721 (VA19)10.1093/mnras/stz2470CrossRefGoogle Scholar
Vandenbroucke, B., Wood, K., Girichidis, P., et al. 2018, MNRAS, 476, 4032 10.1093/mnras/sty554CrossRefGoogle Scholar
Walterbos, R. A. M. & Braun, R. 1994, ApJ, 431, 156 10.1086/174475CrossRefGoogle Scholar
Wang, J., Heckman, T. M., Lehnert, M. D., et al. 1999, ApJ, 515, 97 10.1086/307008CrossRefGoogle Scholar
Weilbacher, P. M., Monreal-Ibero, A., Verhamme, A., et al. 2018, A&A, 611, A95 Google Scholar
Wood, K. & Reynolds, R. J. 1999, ApJ, 525, 799 CrossRefGoogle Scholar
Yan, R. & Blanton, M. R. 2013, IAUS, 295, 328,Google Scholar
York, D. G., et al. 2000, AJ, 120, 1579 10.1086/301513CrossRefGoogle Scholar
Zhang, K., et al. 2017, MNRAS, 466, 3217 10.1093/mnras/stw3308CrossRefGoogle Scholar
Zurita, A., Rozas, M., Beckman, J. E. et al. 2000, A&A, 363, 9 Google Scholar