Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T07:56:13.912Z Has data issue: false hasContentIssue false

Implications of extraterrestrial material on the origin of life

Published online by Cambridge University Press:  27 October 2016

Matthew A. Pasek*
Affiliation:
School of Geosciences, University of South Florida, 4202 E. Fowler Ave, NES 204, Tampa, FL email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Meteoritic organic material may provide the best perspective on prebiotic chemistry. Meteorites have also been invoked as a source of prebiotic material. This study suggests a caveat to extraterrestrial organic delivery: that prebiotic meteoritic organics were too dilute to promote prebiotic reactions. However, meteoritic material provides building material for endogenous synthesis of prebiotic molecules, such as by hydrolysis of extraterrestrial organic tars, and corrosion of phosphide minerals.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bottke, W. F., Vokrouhlický, D., Minton, D., Nesvorný, D., Morbidelli, A., Brasser, R., Simonson, B., & Levison, H. F. 2012, Nature, 485, 78 CrossRefGoogle Scholar
Butch, C., Cope, E. D., Pollet, P., Gelbaum, L., Krishnamurthy, R., & Liotta, C. L. 2013, J. Am. Chem. Soc., 135, 13440 CrossRefGoogle Scholar
Cafferty, B. J., Gállego, I., Chen, M. C., Farley, K. I., Eritja, R., & Hud, N. V. 2013, J. Am. Chem. Soc., 135, 2447 CrossRefGoogle Scholar
Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., & Bada, J. L. 2008, Origins Life Evol. B., 38, 105 Google Scholar
Gállego, I., Grover, M. A., & Hud, N. V. 2015, Angew. Chem. Int. Ed., 54, 6765 CrossRefGoogle Scholar
Gull, M., Zhou, M., Fernández, F. M., & Pasek, M. A. 2014, J. Molec. Evol., 78, 109 CrossRefGoogle Scholar
Hill, H. G. & Nuth, J. A. 2003, Astrobiology, 3, 291 Google Scholar
Johnson, A. P., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Lazcano, A., & Bada, J. L. 2008, Science, 322, 404 CrossRefGoogle Scholar
Love, S. G. & Brownlee, D. E. 1993, Science, 262, 550 CrossRefGoogle Scholar
Miller, S. L. 1953, Science, 117, 528 Google Scholar
Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M., & Atlas, Z. 2013, Proc. Natl. Acad. Sci. USA, 110, 10089 Google Scholar
Pasek, M. A. & Kee, T. P. 2011, in: Egel, R., Lankenau, D.-H., & Mulkidjanian, A. Y. (eds.), Origins of Life: The Primal Self-Organization (Berlin and Heidelberg: Springer), p. 57 CrossRefGoogle Scholar
Pasek, M. A. & Lauretta, D. S. 2008, Origins Life Evol. B., 38, 5 Google Scholar
Yablokov, V. A., Smel'tsova, I. L. & Faerman, V. I. 2013, Russ. J. Gen. Chem., 83, 476 CrossRefGoogle Scholar
Zahnle, K. & Grinspoon, D. 1990, Nature, 339, 463 Google Scholar
Zhao, M. & Bada, J. L. 1989, Nature, 339, 463 CrossRefGoogle Scholar