Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T21:03:41.021Z Has data issue: false hasContentIssue false

Implications of a density dependent IMF for the statistics of progenitors of gravitational wave sources

Published online by Cambridge University Press:  30 December 2019

Indulekha Kavila
Affiliation:
School of Pure & Applied Physics, Mahatma Gandhi University, Kottayam 686560INDIA emails: [email protected], [email protected]
Megha Viswambharan
Affiliation:
School of Pure & Applied Physics, Mahatma Gandhi University, Kottayam 686560INDIA emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of mergers of multi-compact object systems offer insights to the formation processes of massive stars in globular clusters. Simulations of stellar clusters, may be used to understand and interpret observations. Simulations generally adopt an Initial Mass Function (IMF) with a Salpeter slope at the high mass end, for the initial distribution of stellar masses. However, observations of the nearest high mass star forming regions point to the IMF at the high mass end being flatter than Salpeter, in regions where the stellar densities are high. We explore the impact of this on the formation rate of potential GW sources, estimated from standard considerations. Globular clusters being significant contributors to the ionization history of the universe, the results have implications for the same. It impacts our ability to explore the putative mass gap, between the upper limit for neutron star masses and the lower limit for black hole masses, also.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2016a, PRL, 116, 061102 10.1103/PhysRevLett.116.061102CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2016b, PRL, 116, 241102 10.1103/PhysRevLett.116.241102CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2016c, PRL, 116, 241103 10.1103/PhysRevLett.116.241103CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2016d, ApJL, 818, L22 10.3847/2041-8205/818/2/L22CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2016e, ApJL, 833, L1 10.3847/2041-8205/833/1/L1CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2017a, PRL, 118, 221101 10.1103/PhysRevLett.118.221101CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2017b, ApJL, 851, L35 10.3847/2041-8213/aa9f0cCrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2017c, PRL, 119, 141101 10.1103/PhysRevLett.119.141101CrossRefGoogle Scholar
Abbott, B. P. et al. (LIGO and Virgo Scientific Collaboration) 2017d, PRL, 119, 161101 10.1103/PhysRevLett.119.161101CrossRefGoogle Scholar
Boylan-Kolchin, M. 2018, MNRAS, 479, 332 10.1093/mnras/sty1490CrossRefGoogle Scholar
Corsaro, E. et al. 2017, NatAs, 1E, 64 Google Scholar
Gouliermis, D. A., Hony, S., & Klessen, R. S. 2014, MNRAS, 439, 3775 10.1093/mnras/stu228CrossRefGoogle Scholar
Habibi, M., Stolte, A., Brandner, W., Hussmann, B., & Motohara, K. 2013, A&A, 556, A26 Google Scholar
Harayama, Y., Eisenhauer, F., & Martins, F. 2008, ApJ, 675, 1319 10.1086/524650CrossRefGoogle Scholar
Kalogera, V. 2000, ApJ, 541, 319 10.1086/309400CrossRefGoogle Scholar
Kirk, H., Pineda, J., Johnstone, D., & Goodman, A. 2010, ApJ, 723, 457 10.1088/0004-637X/723/1/457CrossRefGoogle Scholar
Lim, B., Sung, H., & Hur, H. 2014, ASPC, 482, 225 Google Scholar
Schneider, F. R. N., Sana, H., Evans, C. J., Bestenlehner, J. M., Castro, N., Fossati, L., Gräfener, G., Langer, N. et al. 2018, Science, 359, 69 10.1126/science.aan0106CrossRefGoogle Scholar
van den Heuvel, E. P. J. 1981, IAUS, 93, 155 Google Scholar
Veitch, J., Raymond, V., Farr, B., Farr, W., Graff, P., Vitale, S. et al. 2015, PRD, 91, 042003 10.1103/PhysRevD.91.042003CrossRefGoogle Scholar
Vitale, S., Gerosa, D., Haster, C.-J., Chatziioannou, K., & Zimmerman, A. 2017, PRL, 119, 251103 10.1103/PhysRevLett.119.251103CrossRefGoogle Scholar
Wilking, B. A, Vrba, F. J., & Sullivan, T. 2015, ApJ, 815, 2 10.1088/0004-637X/815/1/2CrossRefGoogle Scholar
Yu, H., & Wang, F. Y. 2016, ApJ, 820, 114 10.3847/0004-637X/820/2/114CrossRefGoogle Scholar