Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:25:40.706Z Has data issue: false hasContentIssue false

Impact of large-scale magnetic fields on stellar structure and evolution

Published online by Cambridge University Press:  01 November 2008

Vincent Duez
Affiliation:
DSM/IRFU/SAp, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France; AIM, UMR 7158, CEA - CNRS - Université Paris 7, France email: [email protected]
S. Mathis
Affiliation:
DSM/IRFU/SAp, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France; AIM, UMR 7158, CEA - CNRS - Université Paris 7, France email: [email protected]
A. S. Brun
Affiliation:
DSM/IRFU/SAp, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France; AIM, UMR 7158, CEA - CNRS - Université Paris 7, France email: [email protected]
S. Turck-Chièze
Affiliation:
DSM/IRFU/SAp, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France; AIM, UMR 7158, CEA - CNRS - Université Paris 7, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the impact on the stellar structure of a large-scale magnetic field in stellar radiation zones. The field is in magneto-hydrostatic (MHS) equilibrium and has a non force-free character, which allows us to study its influence both on the mechanical and and on the energetic balances. This approach is illustrated in the case of an Ap star where the magnetic field matches at the surface with an external potential one. Perturbations of the stellar structure are semi-analytically computed. The relative importance of the magnetic physical quantities is discussed and a hierarchy, aiming at distinguishing various refinement degrees in the implementation of a large-scale magnetic field in a stellar evolution code, is established. This treatment also allows us to deduce the gravitational multipolar moments and the change in effective temperature associated with the presence of a magnetic field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alecian, E., Wade, G. A., et al. 2008, in: Neiner, C. & Zahn, J.-P. (eds.), Stellar MagnetismGoogle Scholar
Bernstein, I. B., Friemann, E. A., Kruskal, M. D., & Kulsrud, R. M. 1958, in RSL Proc. Series A 244, 17Google Scholar
Braithwaite, J. & Nordlund, A. 2006, A&A 450, 1077Google Scholar
Chandrasekhar, S. 1956, PNAS 42, 1CrossRefGoogle Scholar
Duez, V., Brun, A.-S., Mathis, S., Nghiem, P. A. P. & Turck-Chièze, S. 2008, in Mem. S.A.It. 79, 716Google Scholar
Kippenhahn, R. & Weigert, A. 1990, Stellar Structure and Evolution, Springer-Verlag, BerlinCrossRefGoogle Scholar
Maeder, A. & Meynet, G. 2004, A&A 422, 225Google Scholar
Markey, P. & Tayler, R. J. 1973, MNRAS 163, 77CrossRefGoogle Scholar
Markey, P. & Tayler, R. J. 1974, MNRAS 168, 505CrossRefGoogle Scholar
Marsch, G. E. 1992, Phys. Rev. A 45, 7520CrossRefGoogle Scholar
Mathis, S. & Zahn, J.-P. 2004, A&A 425, 229Google Scholar
Mathis, S. & Zahn, J.-P. 2005, A&A 440, 653Google Scholar
Morse, P. M. & Feshbach, H. 1953, Method of Theoretical Physics, McGraw Hill Book Company, New YorkGoogle Scholar
Moss, D. L. 1974, MNRAS 168, 61CrossRefGoogle Scholar
Payne, D. J. B. & Melatos, A. 2004, MNRAS 351, 569CrossRefGoogle Scholar
Reisenegger, A. 2008, A&A, submittedGoogle Scholar
Spitzer, L. 1962, Physics of Fully Ionized Gases (New York : Interscience)Google Scholar
Spruit, H. C. 1999, A&A 349, 189Google Scholar
Sweet, P. A. 1950, MNRAS 110, 548CrossRefGoogle Scholar
Tayler, R. J. 1973, MNRAS 161, 365CrossRefGoogle Scholar
Wade, G. A., Kudryavtsev, D., Romanuyk, I. I., Landsreet, J. D., & Mathys, G. 2000, A&A 355, 1080Google Scholar
Zahn, J.-P., Brun, A.-S., & Mathis, S. 2007, A&A 474, 145Google Scholar