Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T04:11:09.486Z Has data issue: false hasContentIssue false

Identifying Distant AGNs

Published online by Cambridge University Press:  25 July 2014

Laura Trouille
Affiliation:
Dept. of Physics and Astronomy & Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL, USA email: [email protected] Dept. of Astronomy, The Adler Planetarium, Chicago, IL, USA email: [email protected], [email protected]
Amy Barger
Affiliation:
Dept. of Astronomy, University of Wisconsin – Madison, Madison, WI, USA email: [email protected], [email protected] Institute for Astronomy, University of Hawaii, Honolulu, HI, USA email: [email protected]
Christy Tremonti
Affiliation:
Dept. of Astronomy, University of Wisconsin – Madison, Madison, WI, USA email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([OIII]/Hβ versus [NII]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by AGN activity (BPT-AGN). Yet the BPT diagram is limited to z<0.5, the redshift at which [NII]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g−z color, [NeIII]λ3869, and [OII]λλ3726+3729 and can be used for galaxies out to z<1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray selected AGNs as BPT-SF.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alexander, Bauer, Brandt, Schneider, Hornschemeier, Vignali, Barger, Broos, Cowie, Garmire, Townsley, Bautz, Chartas, , & Sargent, 2003, AJ, 126, 539CrossRefGoogle Scholar
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5CrossRefGoogle Scholar
Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 644, 813Google Scholar
Juneau, S., Dickinson, M., Alexander, D. M., & Salim, S. 2011, ApJ, 736, 104CrossRefGoogle Scholar
Kauffmann, Heckman, Tremonti, Brinchmann, Charlot, White, Ridgway, Brinkmann, Fukugita, Hall, Ivezić, Richards, & Schneider, , MNRAS, 346, 1055CrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121Google Scholar
Lamareille, F. 2010, AAP, 509, 53CrossRefGoogle Scholar
Shi, F., Zhao, G., & Liang, Y. C. 2007, AAP, 475, 409Google Scholar
Stasińska, G., Cid Fernandes, R., Mateus, A., Sodré, L., & Asari, N. V. 2006, MNRAS, 371, 972CrossRefGoogle Scholar
Tremonti, Heckman, Kauffmann, Brinchmann, Charlot, White, Seibert, Peng, Schlegel, Uomoto, Fukugita, , & Brinkmann, , 2004, ApJ, 613, 898Google Scholar
Trouille, L., & Barger, A. J. 2010 ApJ, 722, 212CrossRefGoogle Scholar
Trouille, L., Barger, A. J., Cowie, L. L., Yang, Y., & Mushotzky, R. F. 2008, ApJS, 179, 1Google Scholar
Trouille, Barger, Cowie, Yang, & Mushotzky, 2009, ApJ, 703, 2160CrossRefGoogle Scholar
Trouille, L. and Barger, A. J., & Tremonti, C. 2011, ApJ, 742, 46CrossRefGoogle Scholar
Wilkes, Kilgard, Kim, Kim, Polletta, Lonsdale, Smith, Surace, Owen, Franceschini, Siana, , & Shupe, 2009, ApJS, 185, 433Google Scholar
Yan, Ho, Newman, Coil, Willmer, Laird, Georgakakis, Aird, Barmby, Bundy, Cooper, Davis, Faber, Fang, Griffith, Koekemoer, Koo, Nandra, Park, Sarajedini, Weiner, , & Willner, 2011, ApJ, 728, 38CrossRefGoogle Scholar
Yang, Y., Mushotzky, R. F., Steffen, A. T., Barger, A. J., & Cowie, L. L. 2004, AJ, 128, 1501Google Scholar