No CrossRef data available.
Published online by Cambridge University Press: 16 August 2023
. In this work, we implemented a hydrodynamical solution for fast rotating stars, which leaves high values of mass-loss rates and low terminal velocities of the wind. This 1D density distribution adopts a viscosity mimicking parameter which simulates a quasi-Keplerian motion. Then, it is converted to a volumetric density considering vertical hydrostatic equilibrium using a power-law scale height, as usual in viscous decretion disk models. We calculate the theoretical hydrogen emission lines and the spectral energy distribution utilizing the radiative transfer code HDUST. Our disk-wind structures are in agreement with viscous decretions disk models.