Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:23:00.658Z Has data issue: false hasContentIssue false

Hybrid Vlasov simulations for alpha particles heating in the solar wind

Published online by Cambridge University Press:  08 June 2011

Denise Perrone
Affiliation:
Università della Calabria, Dipartimento di Fisica and CNISM, Unità di Cosenza, I-87030 Arcavacata di Rende, Italy email: [email protected]; [email protected]
Francesco Valentini
Affiliation:
Università della Calabria, Dipartimento di Fisica and CNISM, Unità di Cosenza, I-87030 Arcavacata di Rende, Italy email: [email protected]; [email protected] Università di Pisa, Dipartimento di Fisica and CNISM, 56127 Pisa, Italy email: [email protected]
Pierluigi Veltri
Affiliation:
Università della Calabria, Dipartimento di Fisica and CNISM, Unità di Cosenza, I-87030 Arcavacata di Rende, Italy email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. To address this problem, we propose the use of a low-noise hybrid-Vlasov code in four dimensional phase space (1D in physical space and 3D in velocity space) configuration. We trigger a turbulent cascade injecting the energy at large wavelengths and analyze the role of kinetic effects along the development of the energy spectra. Following the evolution of both proton and α distribution functions shows that both the ion species significantly depart from the maxwellian equilibrium, with the appearance of beams of accelerated particles in the direction parallel to the background magnetic field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Dusenbery, P. B. & Hollweg, J. V. 1981, J. Geophys. Res. 86, 153CrossRefGoogle Scholar
Hansteen, V. H., Leer, E., & Holzer, T. E. 1997, ApJ 482, 498CrossRefGoogle Scholar
Hollweg, J. V. & Isenberg, P. A. 2002, J. Geophys. Res. 107, A7, 1147Google Scholar
Isenberg, P. A. & Hollweg, J. V. 1983, J. Geophys. Res. 88, 3924Google Scholar
Isenberg, P. A. 1984, J. Geophys. Res. 89, A4, 2133CrossRefGoogle Scholar
Kasper, J. C., Lazarus, A. J., & Gary, S. P. 2008, Phys. Rev. Lett. 101, 261103CrossRefGoogle Scholar
Mangeney, A., Califano, F., Cavazzoni, C., & Travnicek, P. 2002, J. Comput. Phys. 179, 405CrossRefGoogle Scholar
Marsch, E., Goertz, C. K., & Richter, K. 1982a, J. Geophys. Res. 87, 5030CrossRefGoogle Scholar
Ofman, L. 2010, J. Geophys. Res. 115, A04108Google Scholar
Valentini, F., Trávníček, P., Califano, F., Hellinger, P., & Mangeney, A. 2007 J. Comput. Phys. 225, 753CrossRefGoogle Scholar
Valentini, F., Veltri, P., Califano, F., & Mangeney, A. 2008, Phys. Rev. Lett. 101, 025006CrossRefGoogle Scholar
Valentini, F. & Veltri, P. 2009, Phys. Rev. Lett. 102, 225001CrossRefGoogle Scholar
Valentini, F., Califano, F., & Veltri, P. 2010, Planetary and Space Science doi:10.1016/j.pss.2009.11.007 (in press)Google Scholar
Valentini, F., Califano, F., & Veltri, P. 2010, Phys. Rev. Lett. 104, 205002CrossRefGoogle Scholar
Xie, H. & Ofman, L. 2004, J. Geophys. Res. 109, A08103Google Scholar