Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T12:20:58.895Z Has data issue: false hasContentIssue false

Hunting for Stellar Coronal Mass Ejections

Published online by Cambridge University Press:  12 September 2017

Heidi Korhonen
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark e-mail: [email protected]
Krisztián Vida
Affiliation:
Konkoly Observatory, MTA CSFK, Konkoly Thege M. út 15-17, 1121, Budapest, Hungary
Martin Leitzinger
Affiliation:
University of Graz, Institute of Physics, Department for Geophysics, Astrophysics and Meteorology, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
Petra Odert
Affiliation:
University of Graz, Institute of Physics, Department for Geophysics, Astrophysics and Meteorology, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
Orsolya Eszter Kovács
Affiliation:
Konkoly Observatory, MTA CSFK, Konkoly Thege M. út 15-17, 1121, Budapest, Hungary Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets form and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Hα, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Aarnio, A. N., Matt, S. P., & Stassun, K. G., 2012, ApJ, 760, 9 CrossRefGoogle Scholar
Donati, J.-F., Forveille, T., Collier Cameron, A., et al., 2006, Science, 311, 633 Google Scholar
Drake, J. J., Cohen, O., Yashiro, S., & Gopalswamy, N., 2013, ApJ, 764, 170 Google Scholar
Drake, J. J., Cohen, O., Garraffo, C., & Kashyap, V. 2016, arXiv:1610.05185 Google Scholar
Fuhrmeister, B., Schmitt, J. H. M. M., 2004, A&A, 420, 1079 Google Scholar
Gopalswamy, N., Akiyama, S., Yashiro, S., & Mäkelä, P. 2010, in: Hasan, S.S. & Rutten, R.J. (eds) Astrophysics and Space Science Proceedings (Springer Berlin Heidelberg) p. 289 Google Scholar
Günther, E. W. & Emerson, J. P. 1997, A&A, 321, 803;Google Scholar
Houdebine, E. R., Foing, B. H., & Rodono, M. 1990, A&A, 238, 249;Google Scholar
Lammer, H., Lichtenegger, H. I. M., Kulikov, Y. N., et al. 2007, Astrobiology, p. 185Google Scholar
Leitzinger, M., Odert, P., Ribas, I., et al. 2011, A&A, 536, A62;Google Scholar
Leitzinger, M., Odert, P., Greimel, R., et al., 2014, MNRAS, 443, 898 Google Scholar
Morin, J., Donati, J.-F., Forveille, T., et al., 2008, MNRAS, 384, 77 CrossRefGoogle Scholar
Osten, R. A. & Wolk, S. J., 2009, ApJ, 691, 1128 CrossRefGoogle Scholar
Osten, R. A. & Wolk, S. J., 2015, ApJ, 809, 79 Google Scholar
Vida, K., Kriskovics, L., Oláh, K., et al., 2016, A&A, 590, A11 Google Scholar
Yashiro, S., Akiyama, S., Gopalswamy, N., & Howard, R. A., 2006, ApJ (Letters), 650, L143 Google Scholar