Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:36:03.631Z Has data issue: false hasContentIssue false

The hunt for new pulsars with the Green Bank Telescope

Published online by Cambridge University Press:  20 March 2013

Ryan S. Lynch*
Affiliation:
Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars. Over the last decade, the GBT has successfully found over 100 new pulsars through large-area surveys. Here I discuss the two most recent—the GBT 350 MHz Drift-scan survey and the Green Bank North Celestial Cap survey. The primary science goal of both surveys is to find interesting individual pulsars, including young pulsars, rotating radio transients, exotic binary systems, and especially bright millisecond pulsars (MSPs) suitable for inclusion in Pulsar Timing Arrays, which are trying to directly detect gravitational waves. These two surveys have combined to discover 85 pulsars to date, among which are 14 MSPs and many unique and fascinating systems. I present highlights from these surveys and discuss future plans. I also discuss recent results from targeted GBT pulsar searches of globular clusters and Fermi sources.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, Science, 325, 840Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009b, Science, 325, 848Google Scholar
Antoniadis, J., Freire, P. C. C., Wex, N., et al. in prepGoogle Scholar
Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411CrossRefGoogle Scholar
Bailes, M., Bates, S. D., Bhalerao, V., et al. 2011, Science, 333, 1717Google Scholar
Bhat, N. D. R., Bailes, M., & Verbiest, J. P. W. 2008, Phys. Rev. D, 77, 124017Google Scholar
Boyles, J., Lynch, R., Ransom, S. M., et al. 2012, ApJ submitted, arXiv:1209.4293Google Scholar
Boyles, J., et al. in prepGoogle Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., et al. 2006, Nature, 442, 892Google Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., & Reynolds, J. 2007, ApJ, 666, L93Google Scholar
Cordes, J. M. & Lazio, T. J. W. 2002, arXiv:astro-ph/0207156Google Scholar
Damashek, M., Taylor, J. H., & Hulse, R. A. 1978, ApJ, 225, L31Google Scholar
Deller, A. T., et al. in prepGoogle Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081Google Scholar
Dewey, R. J., Taylor, J. H., Weisberg, J. M., & Stokes, G. H. 1985, ApJ, 294, L25Google Scholar
DuPlain, R., Ransom, S., Demorest, P., et al. 2008, Proc. SPIE, 7019, 45Google Scholar
Freire, P. C. C., Ransom, S. M., Bégin, S., et al. 2008, ApJ, 675, 670CrossRefGoogle Scholar
Freire, P. C. C., Wolszczan, A., van den Berg, M., & Hessels, J. W. T. 2008, ApJ, 679, 1433Google Scholar
Freire, P. C. C., Wex, N., Esposito-Farèse, G., et al. 2012, MNRAS, 423, 3328Google Scholar
Hessels, J. W. T., Ransom, S. M., Kaspi, V. M., et al. 2008, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, 983, 613Google Scholar
Hessels, J. W. T., Ransom, S. M., Stairs, I. H., et al. 2006, Science, 311, 1901CrossRefGoogle Scholar
Kaplan, D. L., Stovall, K., Ransom, S. M., et al. 2012, ApJ, 753, 174CrossRefGoogle Scholar
Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2006, Science, 314, 97CrossRefGoogle Scholar
Lazaridis, K., Wex, N., Jessner, A., et al. 2009, MNRAS, 400, 805Google Scholar
Levin, L., Bailes, M., Bates, S., et al. 2010, ApJ, 721, L33Google Scholar
Lynch, R. S., Boyles, J., Ransom, S. M., et al. 2012, ApJ submitted, arXiv:1209.4296Google Scholar
Lynch, R. S., Freire, P. C. C., Ransom, S. M., & Jacoby, B. A. 2012, ApJ, 745, 109Google Scholar
Lynch, R. S. & Ransom, S. M. 2011a, ApJ, 730, L11Google Scholar
Lynch, R. S., Ransom, S. M., Freire, P. C. C., & Stairs, I. H. 2011ba, ApJ, 734, 89CrossRefGoogle Scholar
Lyne, A. G., Burgay, M., Kramer, M., et al. 2004, Science, 303, 1153Google Scholar
McLaughlin, M. A., Lyne, A. G., Lorimer, D. R., et al. 2006, Nature, 439, 817CrossRefGoogle Scholar
Ransom, S. M., Hessels, J. W. T., Stairs, I. H., et al. 2005, Science, 307, 892Google Scholar
Ransom, S. M., Stairs, I. H., Backer, D. C., et al. 2004, ApJ, 604, 328Google Scholar
Ransom, S. M., Stairs, I. H., et al. in prepGoogle Scholar
Ray, P. S., Abdo, A. A., Parent, D., et al. 2012, arXiv:1205.3089Google Scholar
Rosen, R., Heatherly, S., McLaughlin, M. A., et al. 2010, Astronomy Education Review, 9, 010106Google Scholar
Sayer, R. W., Nice, D. J., & Taylor, J. H. 1997, ApJ, 474, 426CrossRefGoogle Scholar
Stairs, I. H., et al. in prepGoogle Scholar
Stokes, G. H., Taylor, J. H., Weisberg, J. M., & Dewey, R. J. 1985, Nature, 317, 787Google Scholar