Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T21:37:45.186Z Has data issue: false hasContentIssue false

HST STIS Observations of the Central Radio/X-Ray Source in the Compact Starburst Galaxy Henize 2-10

Published online by Cambridge University Press:  30 October 2019

Eric Rohr
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
Mark Whittle
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
Amy Reines
Affiliation:
Department of Physics, Montana State University, Bozeman, MT 59717, USA
Kelsey Johnson
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on radio and X-ray observations, it has been suggested that a black hole of mass ∼106 Mʘ resides in the dwarf starburst galaxy Henize 2-10. This unusual finding has important implications for the formation of massive black holes in the early universe since Henize 2-10 can be viewed as a low redshift analog to the first high-z galaxies. We present long-slit HST STIS spectra that include the central radio/X-ray source. While recent VLT-MUSE spectroscopic observations with 0″.7 seeing show no change in ionization near the central source, our higher spatial resolution STIS observations identify a distinct compact region at the location of the radio/X-ray source. Initial analysis reveals broader (FWHM ∼ 380 km s-1) blue-shifted lines of low ionization. Our analysis focuses on testing two scenarios: a LINER-like AGN and a young (few decades) SNR.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Baldwin, J., Phillips, M. & Terlevich, R. 1981, PASP, 92, 5 CrossRefGoogle Scholar
Blair, W. & Long, K. 2004, ApJS, 155, 101 CrossRefGoogle Scholar
Cid Fernanes, R., Stasińska, G., Schlickmann, M., Mateus, A., Vale Asari, N., Schoenell, W. & Sodré, Jr, , L. 2010 MNRAS, 403, 1036 CrossRefGoogle Scholar
Cresci, G., Vanzi, L., Telles, E., Lanzuisi, G., Brusa, M., Mingozzi, M., Sauvage, M. & Johnson, K. 2017, A&A, 604, A101 Google Scholar
Johnson, K. & Kobulnicky, H. 2003, ApJ 597, 923 CrossRefGoogle Scholar
Kewley, L., Groves, B., Kauffmann, G. & Heckman, T. 2006, MNRAS, 372, 961 CrossRefGoogle Scholar
Kormendy, J. & Ho, L. 2013, ARAA, 51, 511 CrossRefGoogle Scholar
Leitherer, C., Schaerer, D., Goldader, J., Gonzalález Delgado, R., Robert, C., Foo Kune, D., de Mello, D., Devost, D. & Heckman, T. 1999, ApJS, 123, 3 CrossRefGoogle Scholar
Reines, A. & Deller, A. 2012, ApJ (Letters), 750, L25 Google Scholar
Reines, A., Greene, J. & Geha, M. 2013, ApJ, 755, 116 CrossRefGoogle Scholar
Reines, A., Reynolds, M, Miller, J., Sivakoff, G., Greene, J., Hickox, R & Johnson, K. 2016, ApJ (Letters), 830, L35 Google Scholar
Reines, A., Sivakoff, G., Johnson, K. & Brogan, C. 2011, Nature, 470, 66 CrossRefGoogle Scholar
Ulvestad, J., Johnson, K. & Neff, S. 2007, AJ, 133, 1868 CrossRefGoogle Scholar