Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T23:42:43.504Z Has data issue: false hasContentIssue false

How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

Published online by Cambridge University Press:  01 March 2007

A. M. Sobolev
Affiliation:
Ural State University, Ekaterinburg, 620083, Russia, email: [email protected]
D. M. Cragg
Affiliation:
Monash University, Clayton, Australia, email: [email protected]
S. P. Ellingsen
Affiliation:
University of Tasmania, Hobart, Australia, email: [email protected]
M. J. Gaylard
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, South Africa, email: [email protected]
S. Goedhart
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, South Africa, email: [email protected]
C. Henkel
Affiliation:
MPIfR, Bonn, Germany, email: [email protected]
M. S. Kirsanova
Affiliation:
Institute for Astronomy, Moscow, Russia, email: [email protected]
A. B. Ostrovskii
Affiliation:
Ural State University, Ekaterinburg, 620083, Russia, email: [email protected]
N. V. Pankratova
Affiliation:
Ural State University, Ekaterinburg, 620083, Russia, email: [email protected]
O. V. Shelemei
Affiliation:
Ural State University, Ekaterinburg, 620083, Russia, email: [email protected]
D. J. van der Walt
Affiliation:
North-West University, South Africa, email: [email protected]
T. S. Vasyunina
Affiliation:
MPIA, Heidelberg, Germany, email: [email protected]
M. A. Voronkov
Affiliation:
ATNF CSIRO, Sydney, Australia, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region (hcHII) with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Barrett, A. H., Schwartz, P. R., & Waters, J. W. 1971, ApJ 168, L101CrossRefGoogle Scholar
Batrla, W., Matthews, H. E., Menten, K. M., & Walmsley, C. M. 1987, Nature 326, 49CrossRefGoogle Scholar
Brand, J. & Blitz, L. 1993, A&A 275, 67Google Scholar
Caswell, J. L., Vaile, R. A., Ellingsen, S. P. & Norris, R. P. 1995, MNRAS 274, 1126Google Scholar
Cragg, D. M., Sobolev, A. M., Caswell, J. L. et al. , 2004, MNRAS 351, 1327CrossRefGoogle Scholar
Cragg, D. M., Sobolev, A. M. & Godfrey, P. D. 2005, MNRAS 360, 533CrossRefGoogle Scholar
Dame, T. M., Hartmann, D. & Thaddeus, P. 2001, ApJ 547, 792CrossRefGoogle Scholar
Ellingsen, S. P., Norris, R. P. & McCulloch, P. M. 1996, MNRAS 279, 101CrossRefGoogle Scholar
Ellingsen, S. P., Cragg, D. M., Lovell, J. E. J., Sobolev, A. M. et al. , 2004, MNRAS 354, 401CrossRefGoogle Scholar
Ellingsen, S. P. 2005, MNRAS 359, 1498CrossRefGoogle Scholar
Ellingsen, S. P. 2006, ApJ 638, 241CrossRefGoogle Scholar
Ellingsen, S. P. 2007, MNRAS 377, 571CrossRefGoogle Scholar
Goedhart, S., Gaylard, M. J. & van der Walt, D. J. 2005, MNRAS, 355, 553CrossRefGoogle Scholar
Goedhart, S., Minier, V., Gaylard, M. J. & van der Walt, D. J. 2005, MNRAS, 356, 839CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., Megeath, S. T. et al. 2006, ApJ 649, 888CrossRefGoogle Scholar
Johnston, K. J., Gaume, R., Stolovy, S. et al. , 1992, ApJ 385, 232CrossRefGoogle Scholar
Kogan, L. & Slysh, V. 1998, ApJ 497, 800CrossRefGoogle Scholar
Kurtz, S. 2005, ProcIAU 1, 111Google Scholar
Malyshev, A. V. & Sobolev, A. M. 2003, A&ATr 22, 1Google Scholar
Menten, K. M., Walmsley, C. M., Henkel, C., Wilson, T. L. et al. 1986, A&A 169, 271Google Scholar
Menten, K. M. 1991, ApJ (Letters) 380, L75CrossRefGoogle Scholar
Menten, K. M., Reid, M. J., Pratap, P. et al. , 1992, ApJ (Letters) 401, L39CrossRefGoogle Scholar
Minier, V., Ellingsen, S. P., Norris, R. P. & Booth, R. S. 2003, A&A 403, 1095Google Scholar
Minier, V., Burton, M. G. T., Hill Pestalozzi, M. R. et al. 2005, A&A 429, 945Google Scholar
Pandian, J. D., Goldsmith, P. F. & Deshpande, A. A. 2007, ApJ 656, 255Google Scholar
Pestalozzi, M., Minier, V. & Booth, R. 2005, A&A 432, 737Google Scholar
Slysh, V. I., Kalenskii, S. V., Val'tts, I. E. & Otrupcek, R. 1994, MNRAS 268, 464CrossRefGoogle Scholar
Slysh, V. I., Kalenskii, S. V. & Val'tts, I. E. 2002, Astron.Rep. 46, 49CrossRefGoogle Scholar
Sobolev, A. M., Ostrovskii, A. B., Malyshev, A. V. et al. , 2002, ASP Conf.Ser. 206, 179Google Scholar
Sobolev, A. M. 1996, ASPC 102, 68Google Scholar
Sobolev, A. M., Cragg, D. M. & Godfrey, P. D. 1997, MNRAS 288, 39CrossRefGoogle Scholar
Sobolev, A. M., Wallin, B. K. & Watson, W. D. 1998, ApJ 498, 763CrossRefGoogle Scholar
Sobolev, A. M., Watson, W. D. & Okorokov, V. A. 2003, ApJ 590, 333CrossRefGoogle Scholar
Sobolev, A. M., Ostrovskii, A. B., Kirsanova, M. S. et al. , 2005, ProcIAU 1, 174Google Scholar
Sutton, E. C., Sobolev, A. M., Ellingsen, S. P. et al. , 2001, ApJ 554, 173CrossRefGoogle Scholar
Sutton, E. C., Sobolev, A. M., Salii, S. V. et al. , 2004, ApJ 609, 231CrossRefGoogle Scholar
Val'tts, I. E., Ellingsen, S. P., Slysh, V. I. et al. , 2000, MNRAS 317, 315CrossRefGoogle Scholar
Voronkov, M. A., Sobolev, A. M., Ellingsen, S. P. et al. , 2005, Ap&SS 295, 217Google Scholar
Voronkov, M. A., Brooks, K. J., Sobolev, A. M. et al. , 2006, MNRAS 373, 411CrossRefGoogle Scholar
Walsh, A. J., Bertoldi, F., Burton, M. G. & Nikola, T. 2001, MNRAS 326, 36CrossRefGoogle Scholar
van der Walt, D. J. 2005, MNRAS 360, 153Google Scholar
van der Walt, D. J., Sobolev, A. M. & Butner, H. 2007, A&A 464, 1015Google Scholar
Xu, Y., Zheng, X.-W. & Jiang, D.-R. 2003, ChJAA 3, 49Google Scholar