Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T18:03:12.983Z Has data issue: false hasContentIssue false

High-precision abundances of elements in stars with asteroseismic ages

Published online by Cambridge University Press:  02 August 2018

P. E. Nissen
Affiliation:
Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Aarhus University, Denmark email: [email protected]
V. Silva Aguirre
Affiliation:
Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Aarhus University, Denmark email: [email protected]
J. Christensen-Dalsgaard
Affiliation:
Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Aarhus University, Denmark email: [email protected]
R. Collet
Affiliation:
Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Aarhus University, Denmark email: [email protected]
F. Grundahl
Affiliation:
Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Aarhus University, Denmark email: [email protected]
D. Slumstrup
Affiliation:
Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Aarhus University, Denmark email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-precision abundances of elements have been derived from HARPS-N spectra of F and G main-sequence stars having ages determined from oscillation frequencies delivered by the Kepler mission. The tight relations between abundance ratios of refractory elements, e.g., [Mg/Fe] and [Y/Mg], and stellar age previously found for solar twin stars are confirmed. These relations provide new information on nucleosynthesis and Galactic evolution. Abundance ratios between volatile and refractory elements, e.g., [C/Fe] and [O/Fe], show on the other hand a significant scatter at a given age, which may be related to planet-star interactions. This is a potential problem for chemical tagging studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Barklem, P. S., 2016, A&ARv, 24, 9Google Scholar
Cochran, W. D., Hatzes, A. P., Butler, R. P., & Marcy, G. W., 1997, ApJ, 483, 457Google Scholar
Cosentino, R., Lovis, C., Pepe, F., et al., 2012, Proc. SPIE, 8446, 84461VGoogle Scholar
Edvardsson, B., Andersen, J. Gustafsson, B., et al. 1993, A&A, 275 101Google Scholar
Feltzing, S., Howes, L. M., & McMillan, P. J., Stonkute, E., 2017, MNRAS, 465, L109Google Scholar
Gaidos, E., 2015, ApJ, 804, 40Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al., 2008, A&A, 486, 951Google Scholar
Lodders, K., 2003, ApJ, 591, 1220Google Scholar
Lind, K., Bergemann, M., & Asplund, M., 2012, MNRAS, 427, 50Google Scholar
Meléndez, J., Asplund, M., Gustafsson, B., & Yong, D., 2009, ApJ, 704, L66Google Scholar
Minchev, I., Chiappini, C., & Martig, M., 2013, A&A, 558, A9Google Scholar
Nissen, P. E., 2015, A&A, 579, A52Google Scholar
Nissen, P. E., 2016, A&A, 593, A65Google Scholar
Önehag, A., Gustafsson, B., & Korn, A., 2014, A&A, 562, A102Google Scholar
Saffe, C., Jofré, E., Martioli, E., et al., 2017, A&A, 604, L4Google Scholar
Silva Aguirre, V., Lund, M. N., Antia, H. M., et al., 2017, ApJ, 835, 173Google Scholar
Spina, L., Meléndez, J., Karakas, A. I., et al., 2016, A&A, 593, A125Google Scholar
Tucci Maia, M., Ramírez, I., & Meléndez, J., et al. 2016, A&A, 590, A32Google Scholar