Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T12:07:10.219Z Has data issue: false hasContentIssue false

High-Frequency QPOs and Overstable Oscillations of Black-Hole Accretion Disks

Published online by Cambridge University Press:  21 February 2013

Dong Lai
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853, USA email: [email protected]
Wen Fu
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853, USA email: [email protected] Department of Physics & Astronomy, Rice University, Houston, TX, USA
David Tsang
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853, USA email: [email protected] Theoretical Astrophysics, Caltech, Pasadena, CA, USA
Jiri Horak
Affiliation:
Astronomical Institute of the Academy of Sciences, Prague, CZ
Cong Yu
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853, USA email: [email protected] Yunnan Astronomical Observatory, Chinese Academy of Sciences, PRC
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physical origin of high-frequency QPOs (HFQPOs) in black-hole X-ray binaries remains an enigma despite many years of detailed observational studies. Although there exists a number of models for HFQPOs, many of these are simply “notions” or “concepts” without actual calculation derived from fluid or disk physics. Future progress requires a combination of numerical simulations and semi-analytic studies to extract physical insights. We review recent works on global oscillation modes in black-hole accretion disks, and explain how, with the help of general relativistic effects, the energy stored in the disk differential rotation can be pumped into global spiral density modes in the disk, making these modes grow to large amplitudes under certain conditions (“corotational instability”). These modes are robust in the presence of disk magnetic fields and turbulence. The computed oscillation mode frequencies are largely consistent with the observed values for HFQPOs in BH X-ray binaries. The approximate 2:3 frequency ratio is also expected from this model. The connection of HFQPOs with other disk properties (such as production of episodic jets) is also discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abramowicz, M. A. & Kluzniak, W. 2001, A&A, 374, L19Google Scholar
Arras, P., Blaes, O. M., & Turner, N. J. 2006, ApJ, 645, L65Google Scholar
Belloni, T. M., Sanna, A., & Méndez, M. 2012, MNRAS, in press (axrXiv:1207.2311)Google Scholar
Bisnovatyi-Kogan, G. S. & Ruzmaikin, A. A. 1974, Ap&SS, 28, 45Google Scholar
Done, C., Gierlinski, M., & Kubota, A. 2007, Astron. Astrophys. Rev., 15, 1CrossRefGoogle Scholar
Ferreira, B. T. & Ogilvie, G. I. 2008, MNRAS, 386, 2297Google Scholar
Fu, W. & Lai, D. 2009, ApJ, 690, 1386Google Scholar
Fu, W. & Lai, D. 2011a, MNRAS, 410, 399Google Scholar
Fu, W. & Lai, D. 2011b, MNRAS, 410, 1617CrossRefGoogle Scholar
Fu, W. & Lai, D. 2012, MNRAS, 423, 831Google Scholar
Horák, J. 2008, A&A, 486, 1Google Scholar
Horák, J. & Lai, D. 2012, MNRAS, submittedGoogle Scholar
Igumenshchev, I. V., Narayan, R., & Abramowicz, M. A. 2003, ApJ, 592, 1042CrossRefGoogle Scholar
Kato, S. 2001, PASJ, 53, 1Google Scholar
Kato, S. 2003, PASJ, 55, 257Google Scholar
Kato, S. 2008, PASJ, 60, 111CrossRefGoogle Scholar
Lai, D., Tsang, D. 2009, MNRAS, 393, 979Google Scholar
Li, L., Goodman, J., & Narayan, R. 2003, ApJ, 593, 980Google Scholar
McKinney, J. C., Tchekovskoy, A., & Blandford, R. D. 2012, MNRAS, 423, 3083CrossRefGoogle Scholar
Meheut, H., Yu, C., & Lai, D. 2012, MNRAS, 422, 2399Google Scholar
Narayan, R., Goldreich, P., & Goodman, J. 1987, MNRAS, 228, 1CrossRefGoogle Scholar
Narayan, R. & McClintock, J. 2012, MNRAS, 419, L69Google Scholar
Oda, H., et al. 2010, ApJ, 712, 639Google Scholar
Remillard, R. A. & McClintock, J. E. 2006, ARA&A, 44, 49Google Scholar
Reynolds, C. S. & Miller, M. C. 2009, ApJ, 692, 869Google Scholar
Rothstein, D. M. & Lovelace, R. V. E. 2008, ApJ, 677, 1221Google Scholar
Stella, L., Vietri, M., & Morsink, S. M. 1999, ApJ, 524, L63Google Scholar
Tagger, M. & Varniere, P. 2006, ApJ, 652, 1457Google Scholar
Tsang, D. & Lai, D. 2008, MNRAS, 387, 446Google Scholar
Tsang, D. & Lai, D. 2009a, MNRAS, 393, 992Google Scholar
Tsang, D. & Lai, D. 2009b, MNRAS, 396, 589Google Scholar
Tsang, D. & Lai, D. 2009c, MNRAS, 400, 470Google Scholar
Wagoner, R. V. 2012, ApJ, 752, L18Google Scholar