Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:32:14.254Z Has data issue: false hasContentIssue false

High resolution magnetic field measurements in high-mass star-forming regions using masers

Published online by Cambridge University Press:  24 July 2012

Gabriele Surcis
Affiliation:
Joint Institute for VLBI in EuropePostbus 2, 7990AA, Dwingeloo, the Netherlands email: [email protected]
Wouter H. T. Vlemmings
Affiliation:
Chalmers University of Technology, Onsala Space ObservatorySE-439 92Onsala, Sweden email: [email protected]
Huib J. van Langevelde
Affiliation:
Joint Institute for VLBI in EuropePostbus 2, 7990AA, Dwingeloo, the Netherlands email: [email protected] Sterrewacht Leiden, Leiden UniversityPostbus 9513, 2300RA Leiden, the Netherlands email: [email protected]
Busaba Hutawarakorn Kramer
Affiliation:
Max-Planck Institut für RadioastronomieAuf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The bright and narrow spectral line emission of masers is ideal for measuring the Zeeman-splitting as well as for determining the orientation of magnetic fields in 3-dimensions around massive protostars. Recently, polarization observations at milliarcsecond resolution of 6.7-GHz CH3OH masers have uniquely been able to resolve the morphology of magnetic fields close to massive protostars. The observations reveal that the magnetic fields are along outflows and/or on the surfaces of circumstellar tori. Here we present three different examples selected from a total number of 7 massive star-forming regions that were investigated at 6.7-GHz with the EVN in the last years.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Banerjee, R. & Pudritz, R. E. 2007, ApJ, 660, 479Google Scholar
Hunter, T. R., Taylor, G. B., Felli, M., & Tofani, G. 1994, A&A, 284, 215Google Scholar
Keto, E. & Klaassen, P. 2008, ApJ, 678, L109CrossRefGoogle Scholar
Klaassen, P. D., Wilson, C. D., Keto, E. R., & Zhang, Q. 2009, ApJ, 703, 1308CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2003, ApJ, 585, 850Google Scholar
Moscadelli, L., Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Xu, Y. et al. 2009, ApJ, 693, 406CrossRefGoogle Scholar
Nedoluha, G. E. & Watson, W. D. 1992, ApJ, 384, 185CrossRefGoogle Scholar
Qiu, Keping, Zhang, Qizhou, & Menten, Karl M. 2011, ApJ, 728, 6CrossRefGoogle Scholar
Rygl, K. L. J., Brunthaler, A., Sanna, A., Menten, K. M., Reid, M. J., van Langevelde, H. J., Honma, M., Torstesson, K. J. E., & Fujisawa, K. 2012, A&A, arXiv1111.7023RGoogle Scholar
Sandell, G., Goss, W. M., Wright, M., & Corder, S. 2009, ApJ, 699, L31Google Scholar
Sato, M., Reid, M. J., Brunthaler, A., & Menten, K. M. 2010, ApJ, 720, 1055CrossRefGoogle Scholar
Shepherd, D. S., Testi, L., & Stark, D. P. 2003, ApJ, 584, 882CrossRefGoogle Scholar
Surcis, G., Vlemmings, W. H. T., Dodson, R., & van Langevelde, H. J. 2009, A&A, 506, 757Google Scholar
Surcis, G., VlemmingsCuriel, S. Curiel, S., Hutawarakorn Kramer, B., Torrelles, J. M., & Sarma, P. 2011a, A&A, 527, A48Google Scholar
Surcis, G., Vlemmings, W. H. T., Torres, R. M., van Langevelde, H. J. & Hutawarakorn Kramer, B. 2011b, A&A, 533, A47Google Scholar
Tang, Y.-W., Ho, P. T. P., Koch, P. M., Girart, J. M., Lai, S.-P., & Rao, R. 2009, ApJ, 700, 251CrossRefGoogle Scholar
Torrelles, J. M., Gómez, J. F., Rodríguez, L. F., Ho, P. T. P., Curiel, S., & Vazquez, R. 1997, ApJ, 489, 744CrossRefGoogle Scholar
Vlemmings, W. H. T., Torres, R. M., & Dodson, R. 2011, A&A, 529, 95Google Scholar