Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T12:39:59.920Z Has data issue: false hasContentIssue false

The Herschel view of the Galactic center

Published online by Cambridge University Press:  22 May 2014

John Bally
Affiliation:
Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences University of Colorado at Boulder, UCB 389, Boulder, Colorado, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 3.5 meter diameter Herschel Space Observatory conducted a ∼720 square-degree survey of the Galactic plane, the Herschel Galactic plane survey (Hi-GAL). These data provide the most sensitive and highest resolution observations of the far-IR to sub-mm continuum from the central molecular zone (CMZ) at λ = 70, 160, 250, 350, and 500 μm obtained to date. Hi-GAL can be used to map the distributions of temperature and column density of dust in CMZ clouds, warm dust in Hii regions, and identify highly embedded massive protostars and clusters and the dusty shells ejected by supergiant stars. These data enable classification of sources and re-evaluation of the current and recent star-formation rate in the CMZ. The outer CMZ beyond |l| = 0.9 degrees (Rgal > 130 pc) contains most of the dense (n > 104 cm−3 gas in the Galaxy but supports very little star formation. The Hi-GAL and Spitzer data show that almost all star formation occurs in clouds moving on x2 orbits at Rgal < 100 pc. While the 106 M Sgr B2 complex, the 50 km s−1 cloud near Sgr A, and the Sgr C region are forming clusters of massive stars, other clouds are relatively inactive star formers, despite their high densities, large masses, and compact sizes. The asymmetric distribution of dense gas about Sgr A* on degree scales (most dense CMZ gas and dust is at positive Galactic longitudes and positive VLSR) and compact 24 μm sources (most are at negative longitudes) may indicate that eposidic mini-starbursts occasionally ‘blow-out’ a portion of the gas on these x2 orbits. The resulting massive-star feedback may fuel the compact 30 pc scale Galactic center bubble associated with the Arches and Quintuplet clusters, the several hundred pc scale Sofue-Handa lobe, and the kpc-scale Fermi/LAT bubble, making it the largest ‘superbubble’ in the Galaxy. A consequence of this model is that in our Galaxy, instead of the supermassive black hole (SMBH) limiting star formation, star formation may limit the growth of the SMBH.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bally, J., Aguirre, J., Battersby, C., et al. 2010, ApJ 721, 137CrossRefGoogle Scholar
Bally, J., Stark, A. A., Wilson, R. W., & Henkel, C. 1988, ApJ 324, 223Google Scholar
Bally, J., Stark, A. A., Wilson, R. W., & Henkel, C. 1987, ApJS 65, 13Google Scholar
Battersby, C., Bally, J., Ginsburg, A., et al. 2011, A&A 535, A128Google Scholar
Binney, J., Gerhard, O. E., Stark, A. A., Bally, J., & Uchida, K. I. 1991, MNRAS 252, 210Google Scholar
Blitz, L., Binney, J., Lo, K. Y., Bally, J., & Ho, P. T. P. 1993, Nature 361, 417Google Scholar
Carretti, E., Crocker, R. M., Staveley-Smith, L., et al. 2013, Nature, 493, 66Google Scholar
Clavel, M., Terrier, R., Goldwurm, A., et al. 2013, A&A 558, A32Google Scholar
Elmegreen, B. G. 1994, ApJ 425, L73Google Scholar
Enokiya, R., Torii, K., Schultheis, M., et al. 2014, ApJ 780, 72CrossRefGoogle Scholar
Ferrière, K., Gillard, W., & Jean, P. 2007, A&A 467, 611Google Scholar
Kormendy, J. & Kennicutt, R. C. Jr., 2004, ARAA 42, 603Google Scholar
Kruijssen, J. M. D., Longmore, S. N., Elmegreen, B. G., et al. 2013, arXiv: 1303.6286Google Scholar
Law, C. J. 2010, ApJ 708, 474Google Scholar
Law, C. J., Backer, D., Yusef-Zadeh, F., & Maddalena, R. 2009, ApJ 695, 1070CrossRefGoogle Scholar
Longmore, S. N., Kruijssen, J. M. D., Bally, J., et al. 2013a, MNRAS 433, L15Google Scholar
Longmore, S. N., Bally, J., Testi, L., et al. 2013b, MNRAS 429, 987Google Scholar
Longmore, S. N., Rathborne, J., Bastian, N., et al. 2012, ApJ 746, 117Google Scholar
Molinari, S., Bally, J., Noriega-Crespo, A., et al. 2011, ApJ 735, L33Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2010a, A&A 518, L100Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2010b, PASP 122, 314Google Scholar
Morris, M. & Serabyn, E. 1996, ARAA 34, 645CrossRefGoogle Scholar
Murray, N. & Rahman, M. 2010, ApJ 709, 424Google Scholar
Oka, T., Hasegawa, T., Sato, F., Tsuboi, M., & Miyazaki, A. 1998, ApJS 118, 455Google Scholar
Oka, T., Hasegawa, T., Sato, F., et al. 2001, ApJ 562, 348Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013, A&A 554, A139Google Scholar
Reid, M. J., Menten, K. M., Zheng, X. W., Brunthaler, A., & Xu, Y. 2009, ApJ 705, 1548CrossRefGoogle Scholar
Rodriguez-Fernandez, N. J., Combes, F., Martin-Pintado, J., Wilson, T. L., & Apponi, A. 2006, A&A 455, 963Google Scholar
Sofue, Y. & Handa, T. 1984, Nature, 310, 568CrossRefGoogle Scholar
Stark, A. A. & Bania, T. M. 1986, ApJ 306, L17Google Scholar
Su, M., Slatyer, T. R., & Finkbeiner, D. P. 2010, ApJ 724, 1044Google Scholar
Tsuboi, M., Handa, T., & Ukita, N. 1999, ApJS 120, 1Google Scholar
Yusef-Zadeh, F., Hewitt, J. W., Arendt, R. G., et al. 2009, ApJ 702, 178Google Scholar
Yusef-Zadeh, F., Braatz, J., Wardle, M., & Roberts, D. 2008, ApJ 683, L147Google Scholar