Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T18:20:37.017Z Has data issue: false hasContentIssue false

The Herschel View of Star Formation

Published online by Cambridge University Press:  05 March 2015

Philippe André*
Affiliation:
Laboratoire d'Astrophysique (AIM) Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial conditions and early phases of the star formation process. The Herschel images reveal an intricate network of filamentary structure in every interstellar cloud. These filaments all exhibit remarkably similar widths - about a tenth of a parsec - but only the densest ones contain prestellar cores, the seeds of future stars. The Herschel results favor a scenario in which interstellar filaments and prestellar cores represent two key steps in the star formation process: first turbulence stirs up the gas, giving rise to a universal web-like structure in the interstellar medium, then gravity takes over and controls the further fragmentation of filaments into prestellar cores and ultimately protostars. This scenario provides new insight into the inefficiency of star formation, the origin of stellar masses, and the global rate of star formation in galaxies. Despite an apparent complexity, global star formation may be governed by relatively simple universal laws from filament to galactic scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abergel, A., Boulanger, F., Mizuno, A., & Fukui, Y. 1994, ApJ, 423, L59Google Scholar
Alves, J. F., Lada, C. J., & Lada, E. A. 2001, Nature, 409, 159Google Scholar
Alves, J. F., Lombardi, M., & Lada, C. J. 2007, A&A, 462, L17Google Scholar
André, P., Belloche, A., Motte, F., & Peretto, N. 2007, A&A, 472, 519Google Scholar
André, Ph., Men'shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102Google Scholar
André, Ph., Men'shchikov, A., Könyves, V., & Arzoumanian, D. 2011, in Computational Star Formation, IAU Symp. 270, Eds. Alves, J.et al., p. 255Google Scholar
André, P., Ward-Thompson, D. & Barsony, M. 2000, in Protostars and Planets IV, Eds Mannings, V.et al., p.59Google Scholar
André, P., Ward-Thompson, D. & Greaves, J. S. 2012, Science, 337, 69Google Scholar
Arzoumanian, D., André, Ph., Didelon, P., et al. 2011, A&A, 529, L6Google Scholar
Arzoumanian, D., André, Ph., Peretto, N., & Könyves, V. 2013, A&A, 553, A119Google Scholar
Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARA&A, 48, 339Google Scholar
Bastien, P., Arcoragi, J.-P., Benz, W., Bonnell, I., & Martel, H. 1991, ApJ, 378, 255Google Scholar
Bate, M. R. & Bonnell, I. A. 2005, MNRAS, 356, 1201Google Scholar
Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577CrossRefGoogle Scholar
Bergin, E. A. & Tafalla, M. 2007, ARA&A, 45, 339Google Scholar
Bonnor, W. B. 1956, MNRAS, 116, 351Google Scholar
Bontemps, S., André, Ph., Könyves, V., et al. 2010, A&A, 518, L85Google Scholar
Chabrier, G. 2005, in The Initial Mass Function 50 years later, Eds. Corbelli, E.et al., p.41Google Scholar
Chapman, N. L., Goldsmith, P. F., Pineda, J. L., et al. 2011, ApJ, 741, 21CrossRefGoogle Scholar
Crutcher, R. M. 1999, ApJ, 520, 706Google Scholar
Crutcher, R. M. 2012, ARA&A, 50, 29Google Scholar
Di Francesco, J., Evans II, N. J., Caselli, P., et al. 2007, in Protostars and Planets V, p. 17Google Scholar
Dunham, M. M., Crapsi, A., Evans, N. J., et al. 2008, ApJS, 179, 249Google Scholar
Enoch, M. L., Young, K. E., Glenn, J., Evans, N. J., et al. 2008, ApJ, 684, 1240CrossRefGoogle Scholar
Evans, N. J. 2011, in Computational Star Formation, IAU Symp. 270, Eds. Alves, J.et al., p. 25CrossRefGoogle Scholar
Falgarone, E., Pety, J., & Hily-Blant, P. 2009, A&A, 507, 355Google Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., et al. 2010, A&A, 512, A81Google Scholar
Fiege, J. D. & Pudritz, R. E. 2000, MNRAS, 311, 85Google Scholar
Fischera, J. & Martin, P. G. 2012, A&A, 542, A77Google Scholar
Gao, Y. & Solomon, P. 2004, ApJ, 606, 271CrossRefGoogle Scholar
Gong, H. & Ostriker, E. C. 2011, ApJ, 729, 120Google Scholar
Goodman, A. A., Barranco, J. A., Wilner, D. J., & Heyer, M. H. 1998, ApJ, 504, 223CrossRefGoogle Scholar
Goodwin, S. P., Nutter, D., Kroupa, P., Ward-Thompson, D., & Whitworth, A. P. 2008, A&A, 477, 823Google Scholar
Greaves, J. S., Holland, W. S., & Pound, M. W. 2003, MNRAS, 346, 441Google Scholar
Guillout, P. 2001, in From Darkness to Light, Eds. Montmerle, T. & André, P., ASP Conf. Ser., 243, p. 677Google Scholar
Gutermuth, R. A., Bourke, T. L., Allen, L. E., et al. 2008, ApJ, 673, L151CrossRefGoogle Scholar
Hacar, A. & Tafalla, M. 2011, A&A, 533, A34Google Scholar
Hartmann, L. 2002, ApJ, 578, 914Google Scholar
Hatchell, J., Richer, J. S., Fuller, G. A., et al. 2005, A&A, 440, 151Google Scholar
Heiderman, A., Evans, N. J., Allen, L. E., et al. 2010, ApJ, 723, 1019Google Scholar
Heithausen, A., et al. 2002, A&A, 383, 591Google Scholar
Heitsch, F., Ballesteros-Paredes, J., & Hartmann, L. 2009, ApJ, 704, 1735Google Scholar
Hennebelle, P. 2013, A&A, submittedGoogle Scholar
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395Google Scholar
Hennemann, M., Motte, F., Schneider, N., et al. 2012, A&A, 543, L3Google Scholar
Heyer, M., Gong, H., Ostriker, E., & Brunt, C. 2008, ApJ, 680, 420Google Scholar
Hily-Blant, P. & Falgarone, E. 2007, A&A, 469, 173Google Scholar
Hily-Blant, P. & Falgarone, E. 2009, A&A, 500, L29Google Scholar
Inutsuka, S. 2001, ApJ, 559, L149Google Scholar
Inutsuka, S. & Miyama, S. M. 1992, ApJ, 388, 392Google Scholar
Inutsuka, S. & Miyama, S. M. 1997, ApJ, 480, 681Google Scholar
Johnstone, D., Wilson, C. D., Moriarty-Schieven, G., et al. 2000, ApJ, 545, 327Google Scholar
Johnstone, D., Di Francesco, J., & Kirk, H. 2004, ApJ, 611, L45Google Scholar
Kawachi, T. & Hanawa, T. 1998, PASJ, 50, 577Google Scholar
Kennicutt, R. 1998, ApJ, 498, 541Google Scholar
Klessen, R. S. & Burkert, A. 2000, ApJS, 128, 287Google Scholar
Klessen, R. S. & Hennebelle, P. 2010, A&A, 520, A17Google Scholar
Könyves, V., André, Ph., Men'shchikov, A., et al. 2010, A&A, 518, L106Google Scholar
Kramer, C., Stutzki, J., Rohrig, R., & Corneliussen, U. 1998, A&A, 329, 249Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231Google Scholar
Lada, C. J., Lombardi, M., & Alves, J. 2010, ApJ, 724, 687Google Scholar
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ, 745, 190Google Scholar
Larson, R. B. 1969, MNRAS, 145, 271Google Scholar
Larson, R. B., 1981, MNRAS, 194, 809Google Scholar
Larson, R. B. 1985, MNRAS, 214, 379Google Scholar
Larson, R. B. 2005, MNRAS, 359, 211Google Scholar
Li, D. & Goldsmith, P. F. 2012, ApJ, 756, 12Google Scholar
Matzner, C. D. & McKee, C. F. 2000, ApJ, 545, 364Google Scholar
Maury, A., André, Ph., Men'shchikov, A., Könyves, V., & Bontemps, S. 2011, A&A, 535, A77Google Scholar
Men'shchikov, A., André, Ph., Didelon, P., et al. 2010, A&A, 518, L103Google Scholar
Men'shchikov, A., André, Ph., Didelon, P., Motte, F., et al. 2012, A&A, 542, A81Google Scholar
Miville-Deschênes, M.-A., Martin, P. G., Abergel, A., et al. 2010, A&A, 518, L104Google Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987, Prog. Theor. Phys., 78, 1273Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100Google Scholar
Motte, F., André, P., & Neri, R. 1998, A&A, 336, 150Google Scholar
Motte, F., Zavagno, A., Bontemps, S., et al. 2010, A&A, 518, L77Google Scholar
Myers, P. C. 1983, ApJ, 270, 105Google Scholar
Myers, P. C. 2009, ApJ, 700, 1609Google Scholar
Nagasawa, M. 1987, Prog. Theor. Phys., 77, 635Google Scholar
Nakamura, F. 1998, ApJ, 507, L165Google Scholar
Onishi, T., Mizuno, A., Kawamura, A., et al. 1998, ApJ, 502, 296Google Scholar
Ostriker, J. 1964, ApJ, 140, 1056Google Scholar
Padoan, P. & Nordlund, A. 2002, ApJ, 576, 870CrossRefGoogle Scholar
Padoan, P., Juvela, M., Goodman, A. A., & Nordlund, A. 2001, ApJ, 553, 227Google Scholar
Palmeirim, P., André, Ph., Kirk, J., et al. 2013, A&A, 550, A38Google Scholar
Peretto, N., André, P., & Belloche, A. 2006, A&A, 445, 979Google Scholar
Peretto, N., André, Ph., Könyves, V., et al. 2012, A&A, 541, A63Google Scholar
Perrot, C. A. & Grenier, I. A. 2003, A&A, 404, 519Google Scholar
Pezzuto, S., Elia, D., Schisano, E., et al. 2012, A&A, 547, A54Google Scholar
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1Google Scholar
Pon, A., Johnstone, D., & Heitsch, F. 2011, ApJ, 740, 88Google Scholar
Saigo, K. & Tomisaka, K. 2011, ApJ, 728, 78Google Scholar
Schneider, N., André, Ph., Könyves, V., et al. 2013, ApJL, 766, L17Google Scholar
Schneider, N., Csengeri, T., Bontemps, S., et al. 2010, A&A, 520, A49Google Scholar
Schneider, S. & Elmegreen, B. G. 1979, ApJS, 41, 87Google Scholar
Shu, F. 1977, ApJ, 214, 488Google Scholar
Sousbie, T., 2011, MNRAS, 414, 350Google Scholar
Stanke, T., Smith, M. D., Gredel, R., & Khanzadyan, T. 2006, A&A, 447, 609Google Scholar
Starck, J. L., Donoho, D. L., & Candès, E. J. 2003, A&A, 398, 785Google Scholar
Toalá, J. A., Vázquez-Semadeni, E., & Gómez, G. C. 2012, ApJ, 744, 190Google Scholar
Tohline, J. E. 1982, Fund. of Cos. Phys., 8, 1Google Scholar
Ward-Thompson, D., André, P., Crutcher, R., Johnstone, D., Onishi, T., & Wilson, C. 2007, Protostars and Planets V, Eds. Reipurth, B., Jewitt, D., Keil, K. (Tucson: University of Arizona Press), p. 33Google Scholar
Ward-Thompson, D., Kirk, J. M., André, P., et al. 2010, A&A, 518, L92Google Scholar
Whitworth, A. P., Bhattal, A. S., Francis, N., & Watkins, S. J. 1996, MNRAS, 283, 1061Google Scholar