Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T07:24:03.804Z Has data issue: false hasContentIssue false

Heating and dynamics of the quiet solar chromosphere

Published online by Cambridge University Press:  01 September 2007

Wolfgang Kalkofen*
Affiliation:
Harvard-Smithsonian Center for Astrophysics email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quiet solar chromosphere in regions with negligible magnetic field is believed to be heated by acoustic waves. But their energy flux, measured in the upper photosphere with the Transition Region And Coronal Explorer (TRACE), has been found to be insufficient to account for the radiative emission from the chromosphere. Wedemeyer-Böhm et al. (2007) and Cuntz et al. (2007), employing a 3D hydrodynamical model by Wedemeyer et al. (2004), have proposed that the spatial resolution of TRACE is inadequate to resolve intensity fluctuations that occur on small spatial scales. This paper accepts the principle of spatial averaging by TRACE as a qualitative explanation for the low acoustic flux but finds that the hydrodynamical model is too much simplified in the treatment of radiative energy exchange to provide a quantitative measure of the suppression of the fluctuations. The heating mechanism of the chromosphere thus remains an open question.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Anderson, L. S. & Athay, R. G. 1989, ApJ, 336, 1089CrossRefGoogle Scholar
Bodo, G., Kalkofen, W., Massaglia, S. & Rossi, P. 2000, A&A, 354, 296Google Scholar
Carlsson, M., Hansteen, V.H., de Pontieu, B., et al. 2007, PASJ, acceptedGoogle Scholar
Carlsson, M. & Stein, R.F. 1995, ApJ, 440, L29CrossRefGoogle Scholar
Cauzzi, G., Reardon, K.P., Vecchio, A., Janssen, K. & Rimmele, T. 2007, PASP, Conf. Ser. 368, 127Google Scholar
Cram, L.E. & Damé, L. 1983, ApJ, 272, 355 (CD83)CrossRefGoogle Scholar
Cuntz, M., Rammacher, W. & Musielak, Z.E. 2007, ApJ, 657, L57CrossRefGoogle Scholar
Fossum, A. & Carlsson, M. 2005a, ApJ, 625, 556CrossRefGoogle Scholar
Fossum, A. & Carlsson, M. 2005b, Nature, 435, 919CrossRefGoogle Scholar
Fossum, A. & Carlsson, M. 2006, ApJ, 646, 579CrossRefGoogle Scholar
Kalkofen, W. 2007, ApJ, 671, in pressCrossRefGoogle Scholar
Lites, B.W., Rutten, R.J. & Kalkofen, W. 1993, ApJ, 414, 345CrossRefGoogle Scholar
Liu, S.-Y. 1974, ApJ, 189, 359CrossRefGoogle Scholar
Mendoza-Briceño, C. A. & Erdélyi, R. 2006, ApJ, 648, 722CrossRefGoogle Scholar
Vernazza, J.E., Avrett, E.H. & Loeser, R. 1981, ApJS, 45, 635 (VAL)CrossRefGoogle Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H. 2004, A&A, 414, 1121 (W04)Google Scholar
Wedemeyer-Böhm, S., Steiner, O., Bruls, J., & Rammacher, W. 2007, PASP Conf. Ser. 368, 93Google Scholar
Wöger, F., Wedemeyer-Böhm, S., Schmidt, W. & von der Lühe, O. 2006, A&A 459, L9Google Scholar