Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T16:55:04.435Z Has data issue: false hasContentIssue false

HD141569A: Disk Dissipation Caught in Action

Published online by Cambridge University Press:  27 January 2016

J. Péricaud
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France email: [email protected] CNRS, LAB, UMR 5804, F-33270, Floirac, France
E. Di Folco
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France email: [email protected] CNRS, LAB, UMR 5804, F-33270, Floirac, France
A. Dutrey
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France email: [email protected] CNRS, LAB, UMR 5804, F-33270, Floirac, France
J.-C. Augereau
Affiliation:
Université' Grenoble Alpes, IPAG, 38000 Grenoble, France CNRS, IPAG, 38000 Grenoble, France
V. Piétu
Affiliation:
IRAM, 300 rue de la piscine, F-38046 Saint Martin d'Hères, France
S. Guilloteau
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France email: [email protected] CNRS, LAB, UMR 5804, F-33270, Floirac, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Debris disks are usually thought to be gas-poor, the gas being dissipated by accretion or evaporation during the protoplanetary phase. HD141569A is a 5 Myr old star harboring a famous debris disk, with multiple rings and spiral features. I present here the first PdBI maps of the 12CO(2−1), 13CO(2−1) gas and dust emission at 1.3 mm in this disk. The analysis reveals there is still a large amount of (primordial) gas extending out to 250 AU, i.e. inside the rings observed in scattered light. HD141569A is thus a hybrid disk with a huge debris component, where dust has evolved and is produced by collisions, with a large remnant reservoir of gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Augereau, J.-C., Lagrange, A. M., Mouillet, D.et al., 1999, A&A, 350, 51Google Scholar
Biller, B. A., Liu, M. C., Rice, K.et al., 2015, MNRAS, 450, 4446CrossRefGoogle Scholar
Boccaletti, A., Augereau, J.-C., Marchis, F.et al. 2003, ApJ, 585, 494Google Scholar
Dent, W. R. F., Greaves, J. S., Mannings, V.et al. 2005, MNRAS, 277, 25Google Scholar
Goto, M., Usuda, T., Dullemond, C. P.et al., 2006, ApJ, 652, 758Google Scholar
Jonkheid, B., Kamp, I., Augereau, J.-C.et al., 2006, A&A, 453, 163Google Scholar
Merín, B., Montesinos, B., Eiroa, C.et al. 2004, A&A, 419, 301Google Scholar
Piétu, V., Dutrey, A., & Guilloteau, S., 2007, A&A, 467, 163Google Scholar
Sylvester, R. J., Skinner, C. J., Barlow, M. J.et al., 1996, MNRAS, 279, 915CrossRefGoogle Scholar
Thi, W.-F., Pinte, C., Pantin, E.et al., 2014, A&A, 561, 50Google Scholar
van Leeuwen, F., 2007, A&A, 474, 653Google Scholar
Zuckerman, B., Forveille, T., & Kastner, J. H., 1995, Nature, 373, 494CrossRefGoogle Scholar