Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T12:38:43.984Z Has data issue: false hasContentIssue false

H2 content of galaxies inside and around intermediate redshift clusters

Published online by Cambridge University Press:  29 March 2021

Damien Spérone-Longin*
Affiliation:
Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dense environments have an impact on the star formation rate of galaxies. As stars form from molecular gas, looking at the cold molecular gas content of a galaxy gives useful insights on its efficiency in forming stars. However, most galaxies observed in CO (a proxy for the cold molecular gas content) at intermediate redshifts, are field galaxies. Only a handful of studies focused on cluster galaxies. I present new results on the environment of one medium mass cluster from the EDisCS survey at z ˜ 0.5. 27 star-forming galaxies were selected to evenly sample the range of densities encountered inside and around the cluster. We cover a region extending as far as 8 virial radii from the cluster center. Indeed there is ample evidence that star formation quenching starts already beyond 3 cluster virial radii. I discuss our CO(3-2) ALMA observations, which unveil a large fraction of galaxies with low gas-to-stellar mass ratios.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARAA, 51, 207 CrossRefGoogle Scholar
Carleton, T., Cooper, M. C., Bolatto, A. D., et al. 2017, MNRAS, 467, 4886 CrossRefGoogle Scholar
Chapman, S. C., Bertoldi, F., Smail, I., et al. 2015, MNRAS Lett., 449, L68 CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595 CrossRefGoogle Scholar
De Lucia, G., Poggianti, B. M., Aragòn-Salamanca, A., et al. 2007, MNRAS, 374, 809 CrossRefGoogle Scholar
Dumke, M., Nieten, C., Thuma, G., et al. 2001, A&A, 373, 853 Google Scholar
Freundlich, J., Combes, F., Tacconi, L. J., et al. 2019, A&A, 622, A105 Google Scholar
Genzel, R., Tacconi, L. J., Lutz, D., et al. 2015,ApJ, 800, 20 Google Scholar
Leroy, A. K., Bolatto, A., Gordon, K., et al. 2011 AJ, 136, 2782 CrossRefGoogle Scholar
Solomon, P. & Vanden Bout, P. 2005, ARAA, 43, 677 CrossRefGoogle Scholar
Speagle, J. S., Steinhardt, C. L., Radford, S. J. E., et al. 2014, ApJS, 214, 15 CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179 CrossRefGoogle Scholar
White, S. D., Clowe, D. I., Simard, L., et al. 2005, A&A, 444, 365 Google Scholar