Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T01:33:18.186Z Has data issue: false hasContentIssue false

Gyrochronology and its usage for main sequence field star ages

Published online by Cambridge University Press:  01 October 2008

Sydney A. Barnes*
Affiliation:
Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The construction of all age indicators consists of certain basic steps which lead to the identification of the properties desirable for stellar age indicators. Prior age indicators for main sequence field stars possess only some of these properties. The measured rotation periods of cool stars are particularly useful in this respect because they have well-defined dependencies that allow stellar ages to be determined with ~20% errors. This method, called gyrochronology, is explained informally in this talk, shown to have the desired properties, compared to prior methods, and used to derive ages for samples of main sequence field stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Baliunas, S., Sokoloff, D., & Soon, W. et al. 1996, ApJL, 457, 99CrossRefGoogle Scholar
Barnes, S. A. 1998, PhD Thesis, Yale UniversityGoogle Scholar
Barnes, S. A. 2003, ApJ, 586, 464Google Scholar
Barnes, S. A. 2007, ApJ, 669, 1167Google Scholar
Demarque, P. D. & Larson, R. B. 1964 ApJ, 140, 544CrossRefGoogle Scholar
Donahue, R. A. 1998, in: Donahue, R. A. & Bookbinder, J. A. (eds.), Tenth Cambridge Workshop on Cool Stars, Stellar Systems and the Sun (San Francisco: ASP), p. 1235Google Scholar
Kawaler, S. D. 1989, ApJL, 343, 65CrossRefGoogle Scholar
Mamajek, E. E. & Hillenbrand, L. A. 2008, ApJ, 687, 1264CrossRefGoogle Scholar
Meibom, S., Mathieu, R. D., & Stassun, K. G. 2008, ApJ, in press (arXiv/astroph: 0805:1040)Google Scholar
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984, ApJ, 279, 763CrossRefGoogle Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147Google Scholar
Pont, F. & Eyer, L. 1994, MNRAS, 351, 487CrossRefGoogle Scholar
Radick, R. R., Thompson, D. T., Lockwood, G. W., Duncan, D. K. & Baggett, W. E. 1987, ApJ, 321, 459CrossRefGoogle Scholar
Sandage, A. 1962, ApJ, 135, 349CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ, 171, 565CrossRefGoogle Scholar
Soderblom, D. R., Duncan, D. K., & Johnson, D. R. H. 1991, ApJ, 375, 722CrossRefGoogle Scholar
Strassmeier, K. G.Washuettl, A., Granzer, Th., Scheck, M., & Weber, M. 2000, A&AS, 142, 275Google Scholar
Takeda, G., Ford, E. B., Sills, A., Rasio, F. A., Fischer, D. A., & Valenti, J.A. 2007, ApJS, 168, 297CrossRefGoogle Scholar
Valenti, J. A. & Fischer, D. A. 2005, ApJS, 159, 141CrossRefGoogle Scholar
Wilson, O. C. 1963, ApJ, 138, 832CrossRefGoogle Scholar