Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T16:24:52.077Z Has data issue: false hasContentIssue false

Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

Published online by Cambridge University Press:  27 October 2016

S. Komossa
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
J. G. Baker
Affiliation:
NASA/GSFC, Mail Code: 663, Greenbelt, MD 20771
F. K. Liu
Affiliation:
Department of Astronomy, Peking University, Beijing 100871, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Ackermann, M., et al. 2015, ApJ, in press; arXiv:1509.02063Google Scholar
Arzoumanian, Z., et al. 2015, ApJ, in press; arXiv:1508.03024Google Scholar
Barausse, E., Bellovary, J., Berti, E., Holley-Bockelmann, K., Farris, B., Sathyaprakash, B., & Sesana, A. 2015, Barausse, E., Bellovary, J., Berti, E., et al. 2015, J. Phys. Conf. Ser., 610, 012001 Google Scholar
Brandt, W. N. & Hasinger, G. 2005, ARA&A, 43, 827 Google Scholar
Brockamp, M., Baumgardt, H., Britzen, S., & Zensus, A. 2015, A&A, in press; arXiv:1509.04782Google Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307 Google Scholar
Burke-Spolaor, S. 2011, MNRAS, 410, 2113 Google Scholar
Centrella, J. M. 2003, “What can we learn about cosmic structure from gravitational waves?” in The Emergence of Cosmic Structure: Thirteenth Astrophysics Conference, AIP Conf. Proc., vol. 666, eds. Holt, S. S. & Reynolds, C. S. (AIP: Melville, NY) p. 337 Google Scholar
Centrella, J., Baker, J. G., Kelly, B. J., & van Meter, J. R. 2010, Rev. Mod. Phys., 82, 3069 Google Scholar
Colpi, M. 2014, SSRv, 183, 189 Google Scholar
Comerford, J. M., Pooley, D., Barrows, R. S., et al. 2015, ApJ, 806, 219 Google Scholar
Deane, R. P., et al. 2014, Nature, 511, 57 Google Scholar
De Rosa, G., et al. 2014, ApJ, 790, 145 Google Scholar
De Rosa, A., et al. 2015, MNRAS, 453, 214 Google Scholar
D'Orazio, D. J., Haiman, Z., & Schiminovich, D. 2015, Nature, 525, 351 Google Scholar
Fabbiano, G., Wang, J., Elvis, M., & Risaliti, G. 2011, Nature, 477, 431 CrossRefGoogle Scholar
Fu, H., Myers, A. D., Djorgovski, S. G., et al. 2015, ApJ, 799, 72 Google Scholar
Graham, A. W. 2015, “Galaxy Bulges and Their Massive Black Holes: A Review,” in Galactic Bulges, eds. Laurikainen, E., Peletier, R. F., & Gadotti, D. A. (Springer: Berlin) in press; arXiv:1501.02937Google Scholar
Graham, M. J., et al. 2015, Nature, 518, 74 Google Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, ApJS, 163, 1 CrossRefGoogle Scholar
Hopkins, P. F. & Hernquist, L. 2009, ApJ, 694, 599 Google Scholar
Hughes, S. A. 2002, MNRAS, 331, 805 Google Scholar
Iwasawa, K., et al. 2011, A&A, 529, 106 Google Scholar
Jahnke, K. & Macciò, A. V. 2011, ApJ, 734, 92 Google Scholar
Kartaltepe, J. S., et al. 2012, ApJ, 757, 23 CrossRefGoogle Scholar
Komossa, S. 2012, Advances in Astronomy, 2012, 364973 Google Scholar
Komossa, S., Burwitz, V., & Hasinger, G., et al. 2003, ApJ, 582, L15 CrossRefGoogle Scholar
Komossa, S. & Zensus, J. A. 2015, “Compact Object Mergers: Observations of Supermassive Binary Black Holes and Stellar Tidal Disruption Events,” in Star Clusters and Black Holes Across Cosmic Times, Proc. IAU Symp. 312, eds. Meiron, Y. et al. (Cambridge Univ. Press: Cambridge) in press; arXiv:1502.05720Google Scholar
Koss, M. J., et al. 2015, ApJ, 807, 149 Google Scholar
Kun, E., Frey, S., Gabányi, K. È., et al. 2015, MNRAS, 454, 1290 Google Scholar
Lentati, L., et al. 2015, MNRAS, 453, 2576 Google Scholar
Liu, F. K., Wu, X.-B., & Cao, S. L. 2003, MNRAS, 340, 411 CrossRefGoogle Scholar
Liu, F. K., Li, S., & Chen, X. 2009, ApJ, 706, L133 Google Scholar
Liu, F. K., Li, S., & Komossa, S. 2014, ApJ, 786, 103 Google Scholar
Liu, T., et al. 2015, ApJ, 803, L16 Google Scholar
Lousto, C. & Zlochower, Y. 2011, Phys. Rev. Lett., 107, 231102 Google Scholar
McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014, ApJ, 789, 156 CrossRefGoogle Scholar
Menou, K. 2003, Classical Quant. Grav., 20, 37 Google Scholar
Mortlock, D. J., et al. 2011, Nature, 474, 619 Google Scholar
Roberts, D. H., Saripalli, L., & Subrahmanyan, R. 2015, ApJ, 810, L6 Google Scholar
Rodriguez, C., Taylor, G. B., Zavala, R. T., et al. 2006, ApJ, 646, 49 Google Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74 Google Scholar
Schutz, B. F. 1986, Nature, 323, 310 Google Scholar
Sesana, A. 2013, MNRAS, 433, L1 Google Scholar
Shannon, R. M. et al. 2015, Science, 349, 1522 Google Scholar
Shen, Y., et al. 2011, ApJS, 194, 45 Google Scholar
Sperhake, U. 2015, “Gravitational Recoil and Astrophysical Impact,” in Gravitational Wave Astrophysics, Astrophys. Space Sci. Proc., vol. 40, ed. Sopuerta, C. F. (Springer: New York) p. 185 Google Scholar
Stockton, A. & MacKenty, J. W. 1983, Nature, 305, 678 Google Scholar
Trakhtenbrot, B., et al. 2015, Science, 349, 168 Google Scholar
Treister, E., Schawinski, K., Urry, C. M., & Simmons, B. D. 2012, ApJ, 758, L39 Google Scholar
Valtonen, M., Ciprini, S., & Lehto, H. J. 2012, MNRAS, 427, 77 Google Scholar
van den Bosch, R. C. E., Gebhardt, K., Gültekin, K., et al. 2012, Nature, 491, 729 Google Scholar
Venemans, B. P., et al. 2015, ApJ, 801, L11 Google Scholar
Volonteri, M., Sikora, M., Lasota, J.-P., & Merloni, A. 2013, ApJ, 775, 94 Google Scholar
Volonteri, M., Silk, J., & Dubus, G. 2015, ApJ, 804, 148 Google Scholar
Villforth, C., et al. 2014, MNRAS, 439, 3342 Google Scholar
Wang, F., et al. 2015, ApJ, 807, L9 Google Scholar
Woo, J.-H., Cho, H., Husemann, B., et al. 2014, MNRAS, 437, 32 Google Scholar
Wrobel, J. M., Walker, R. C., & Fu, H. 2014, ApJ, 792, L8 Google Scholar
Wu, X.-B., et al. 2015, Nature, 518, 512 Google Scholar
Yan, C.-S., Lu, Y., Dai, X., & Yu, Q. 2015, ApJ, 809, 117 Google Scholar
Zhu, X.-J., Wen, L., Hobbs, G., et al. 2014, MNRAS, 444, 3709 Google Scholar