Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T05:49:53.434Z Has data issue: false hasContentIssue false

Growth of intermediate mass black holes in first star clusters

Published online by Cambridge University Press:  11 March 2020

Yuya Sakurai
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA30332, US
Naoki Yoshida
Affiliation:
Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-0033, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), UT Institute for Advanced Study, The University of Tokyo, Kashiwa, Chiba277-8583, Japan Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-0033, Japan
Michiko S. Fujii
Affiliation:
Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-0033, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study runaway stellar collisions in primordial star clusters and formation of intermediate mass black holes (IMBHs). Using cosmological simulations, we identify eight atomic-cooling halos in which the star clusters form. We follow stellar and dark matter (DM) dynamics for 3Myr using hybrid N-body simulations. We find that the runaway stellar collisions occur in all star clusters and IMBHs with masses ∼400–1900M form. Performing additional N-body simulations, we explore evolutions of the IMBHs in the star clusters for 15 Myr. The IMBH masses grow via stellar tidal disruption events (TDEs) to ∼700–2500 M. The TDE rates are ∼0.3–1.3 Myr−1. DM motions affect the star cluster evolutions and reduce the TDE rates. The IMBHs may subsequently grow to SMBHs by gas supply through galaxy mergers or large-scale gas inflows, or they may remain within or around the clusters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bañados, E.et al. 2018, Nature, 553, 473CrossRefGoogle Scholar
Ciotti, L. & Ostriker, J. P. 2001, ApJ, 551, 131CrossRefGoogle Scholar
Fujii, M., Iwasawa, M., Funato, Y., & Makino, J. 2007, PASJ, 59, 1095CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288CrossRefGoogle Scholar
Hirano, S., Hosokawa, T., Yoshida, N., Umeda, H., Omukai, K., Chiaki, G., & Yorke, H. W. 2014, ApJ, 781, 60CrossRefGoogle Scholar
Katz, H., Sijacki, D., & Haehnelt, M. G. 2015, MNRAS, 451, 2352CrossRefGoogle Scholar
Maccarone, T. J., Kundu, A., Zepf, S. E., & Rhode, K. L. 2007, Nature, 445, 183CrossRefGoogle Scholar
Milosavljević, M., Couch, S. M., & Bromm, V. 2009, ApJ, 696, L146CrossRefGoogle Scholar
Mortlock, D. J.et al. 2011, Nature, 474, 616CrossRefGoogle Scholar
Nitadori, K. & Makino, J. 2008, New Astronomy, 13, 498CrossRefGoogle Scholar
Omukai, K., Schneider, R., & Haiman, Z. 2008, ApJ, 686, 801CrossRefGoogle Scholar
Portegies Zwart, S. F. & McMillan, S. L. W. 2002, ApJ, 576, 899CrossRefGoogle Scholar
Sakurai, Y., Yoshida, N., & Fujii, M. S. 2019, MNRAS, 484, 4665CrossRefGoogle Scholar
Sakurai, Y., Yoshida, N., Fujii, M. S., & Hirano, S. 2017, MNRAS, 472, 1677CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
Wu, X.-B.et al. 2015, Nature, 518, 512CrossRefGoogle Scholar