Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T22:25:36.791Z Has data issue: false hasContentIssue false

Growing Supermassive Black Holes in Cosmological Simulations of Structure Formation

Published online by Cambridge University Press:  03 June 2010

Debora Sijacki
Affiliation:
Kavli Institute for Cosmology, Cambridge and Institute of Astronomy Madingley Road, Cambridge, CB3 0HA, UK Email: [email protected], [email protected]
Volker Springel
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München, Germany Email: [email protected]
Martin G. Haehnelt
Affiliation:
Kavli Institute for Cosmology, Cambridge and Institute of Astronomy Madingley Road, Cambridge, CB3 0HA, UK Email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss a numerical model for black hole (BH) growth and feedback that allows simultaneous tracking of the evolution of galaxies and their central BHs in fully cosmological simulations. After describing the main features of the numerical model adopted, we show how BHs in these simulations affect the properties of their host halos and how this in turn impacts the growth of the BHs themselves. We also present results from a set of simulations specifically designed to address the issue of BH assembly in the early Universe and discuss whether or not different extensions of the model, in particular rapidly spinning BHs and gravitational recoils, can hamper the formation of the first bright quasars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Fabian, A. C. & Iwasawa, K. 1999, MNRAS, 303, L34CrossRefGoogle Scholar
Häring, N. & Rix, H.-W. 2004, ApJ, 604, L89CrossRefGoogle Scholar
Kauffmann, G. & Haehnelt, M. 2000, MNRAS, 311, 576CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581CrossRefGoogle Scholar
Magorrian, J., et al. 1998, AJ, 115, 2285CrossRefGoogle Scholar
Merloni, A., et al. 2009, ApJ, in pressGoogle Scholar
Puchwein, E., Sijacki, D., & Springel, V. 2008, ApJ, 687, L53CrossRefGoogle Scholar
Sijacki, D., Springel, V., Di Matteo, T., & Hernquist, L. 2007, MNRAS, 380, 877CrossRefGoogle Scholar
Sijacki, D., Springel, V., & Haehnelt, M. G. 2009, MNRAS, 400, 100CrossRefGoogle Scholar
Sijacki, D., Pfrommer, C., Springel, V., & Enßlin, T. A. 2008, MNRAS, 387, 1403CrossRefGoogle Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 289CrossRefGoogle Scholar
Springel, V., Di Matteo, T., & Hernquist, L. 2005, MNRAS, 361, 776CrossRefGoogle Scholar
Springel, V., et al. 2005, Nature, 435, 629CrossRefGoogle Scholar
Tremaine, S., et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar