No CrossRef data available.
Published online by Cambridge University Press: 05 March 2015
We study the gravitational fragmentation of a thick shell comparing the analytical theory to 3D hydrodynamic simulations and to observations of the Carina Flare supershell. We use both grid-based (AMR) and particle-based (SPH) codes to follow the idealised model of the fragmenting shell and found an excellent agreement between the two codes. Growth rates of fragments at different wavelength are well described by the pressure assisted gravitational instability (PAGI) - a new theory of the thick shell fragmentation. Using the APEX telescope we observe a part of the surface of the Carina Flare supershell (GSH287+04-17) in the 13CO(2–1) line. We apply a new clump-finding algorithm DENDROFIND to identify 50 clumps. We determine the clump mass function and we construct the minimum spanning tree connecting clumps positions to estimate the typical distance among clumps. We conclude that the observed masses and distances correspond well to the prediction of PAGI.