Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T12:38:31.503Z Has data issue: false hasContentIssue false

Granulation in Red Supergiants: The Scaling Relations

Published online by Cambridge University Press:  06 February 2024

Yi Ren*
Affiliation:
College of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
Zehao Zhang
Affiliation:
Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China Department of Astronomy, Beijing Normal University, Beijing 100875, China
Biwei Jiang*
Affiliation:
Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China Department of Astronomy, Beijing Normal University, Beijing 100875, China
Igor Soszyński
Affiliation:
Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
Tharindu Jayasinghe
Affiliation:
Department of Astronomy, University of California Berkeley, Berkeley CA 94720, USA NASA Hubble Fellow
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of granulation is an important mechanism of the light variations of red supergiants (RSGs). Based on pure and complete samples of RSGs in the Magellanic Clouds, the mechanisms and characteristics of the granulation of RSGs are investigated based on time-series data. As predicted by the basic physical process of granulation and previous works, there are tight relations between granulation and stellar parameters of RSGs (i.e., the scaling relations). The scaling relations of RSGs provide a new method to infer stellar parameters by using the characteristic timescale and amplitude of granulations. Some faint sources deviate from the scaling relations, which may be due to the difference in the properties of the granulation of the RSGs before and after the blue loop or contamination by Mira variables. However, both of these possibilities suggest that the scaling relations of granulation is different among different types of stars.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abdurro’uf, , Accetta, K., Aerts, C., et al. 2022, ApJS, 259, 35 Google Scholar
Chen, Y., Bressan, A., Girardi, L., et al. 2015, MNRAS, 452, 1068 Google Scholar
Chiavassa, A., Haubois, X., Young, J. S., et al. 2010, A&A, 515, A12 Google Scholar
Chiavassa, A., Plez, B., Josselin, E., & Freytag, B. 2009, A&A, 506, 1351 Google Scholar
Davies, B., Kudritzki, R.-P., Plez, B., et al. 2013, ApJ, 767, 3 Google Scholar
de Assis Peralta, R., Samadi, R., & Michel, E. 2018, AN, 339, 134 Google Scholar
Derekas, A., Plachy, E., Molnár, L., et al. 2017, MNRAS, 464, 1553 Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1 Google Scholar
Guo, J. H., & Li, Y. 2002, ApJ, 565, 559 Google Scholar
Harvey, J. 1985, in ESA Special Publication, Vol. 235, Future Missions in Solar, Heliospheric & Space Plasma Physics, ed. Rolfe, E. & Battrick, B., 199 Google Scholar
Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2020, MNRAS, 491, 13 Google Scholar
Kelly, B. C., Becker, A. C., Sobolewska, M., Siemiginowska, A., & Uttley, P. 2014, ApJ, 788, 33 Google Scholar
Kiss, L. L., Szabó, G. M., & Bedding, T. R. 2006, MNRAS, 372, 1721 Google Scholar
Kochanek, C. S., Shappee, B. J., Stanek, K. Z., et al. 2017, PASP, 129, 104502 Google Scholar
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395 Google Scholar
Lomb, N. R. 1976, Ap&SS, 39, 447 Google Scholar
Massey, P., & Evans, K. A. 2016, ApJ, 826, 224 Google Scholar
Mathur, S., Hekker, S., Trampedach, R., et al. 2011, ApJ, 741, 119 Google Scholar
Pastorelli, G., Marigo, P., Girardi, L., et al. 2020, MNRAS, 498, 3283 Google Scholar
Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334 Google Scholar
Ren, Y., Jiang, B., Yang, M., et al. 2021a, ApJ, 907, 18 Google Scholar
Ren, Y., Jiang, B., Yang, M., Wang, T., & Ren, T. 2021b, ApJ, 923, 232 Google Scholar
Ren, Y., & Jiang, B.-W. 2020, ApJ, 898, 24 Google Scholar
Ren, Y., Jiang, B.-W., Yang, M., & Gao, J. 2019, ApJS, 241, 35 Google Scholar
Scargle, J. D. 1982, ApJ, 263, 835 Google Scholar
Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48 Google Scholar
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 Google Scholar
Skowron, D. M., Skowron, J., Udalski, A., et al. 2021, ApJS, 252, 23 Google Scholar
Soraisam, M. D., Bildsten, L., Drout, M. R., et al. 2018, ApJ, 859, 73 Google Scholar
Soszyński, I., Udalski, A., Szymański, M. K., et al. 2015, AcA, 65, 297 Google Scholar
Stothers, R., & Leung, K. C. 1971, A&A, 10, 290 Google Scholar
Udalski, A., Szymański, M. K., & Szymański, G. 2015, AcA, 65, 1 Google Scholar
Yang, M., & Jiang, B. W. 2008, in The Art of Modeling Stars in the 21st Century, ed. Deng, L. & Chan, K. L., Vol. 252, 267 Google Scholar
Yang, M., & Jiang, B. W. 2011, ApJ, 727, 53 Google Scholar
Yang, M., & Jiang, B. W. 2012, ApJ, 754, 35 Google Scholar
Yang, M., Bonanos, A. Z., Jiang, B.-W., et al. 2018, A&A, 616, A175 Google Scholar
Yang, M., Bonanos, A. Z., Jiang, B.-W., et al. 2019, A&A, 629, A91 Google Scholar
Yang, M., Bonanos, A. Z., Jiang, B.-W., et al. 2020, A&A, 639, A116 Google Scholar
Yang, M., Bonanos, A. Z., Jiang, B., et al. 2021, A&A, 646, A141 Google Scholar
Yu, J., Huber, D., Bedding, T. R., et al. 2018, ApJS, 236, 42 Google Scholar