Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T22:54:38.817Z Has data issue: false hasContentIssue false

Granular cells in the presence of magnetic field

Published online by Cambridge University Press:  12 September 2017

J. Jurčák
Affiliation:
Astronomical Institute ASCR, Fričova 298, 251 65 Ondřejov, Czech Republic email: [email protected]
B. Lemmerer
Affiliation:
Institute of Physics, IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria email: [email protected]
M. van Noort
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a statistical study of the dependencies of the shapes and sizes of the photospheric convective cells on the magnetic field properties. This analysis is based on a 2.5 hour long SST observations of active region NOAA 11768. We have blue continuum images taken with a cadence of 5.6 sec that are used for segmentation of individual granules and 270 maps of spectropolarimetric CRISP data allowing us to determine the properties of the magnetic field along with the line-of-sight velocities. The sizes and shapes of the granular cells are dependent on the the magnetic field strength, where the granules tend to be smaller in regions with stronger magnetic field. In the presence of highly inclined magnetic fields, the eccentricity of granules is high and we do not observe symmetric granules in these regions. The mean up-flow velocities in granules as well as the granules intensities decrease with increasing magnetic field strength.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abramenko, V. I., Yurchyshyn, V. B., Goode, P. R., Kitiashvili, I. N., & Kosovichev, A. G., 2012, ApJ, 756, L27 CrossRefGoogle Scholar
Borrero, J. M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., & Bogart, R., 2011, Solar Phys., 273, 267 CrossRefGoogle Scholar
Centeno, R., Blanco Rodriguez, J., Del Toro Iniesta, J. C., Solanki, S. K., Barthol, P., Gandorfer, A., Gizon, L., Hirzberger, J., Riethmuller, T. L., van Noort, M., Orozco Suarez, D., Schmidt, W., Martinez Pillet, V., & Knolker, M. 2016, arXiv, 2016arXiv161003531CGoogle Scholar
Danilovic, S., Gandorfer, A., Lagg, A., Schüssler, M., Solanki, S. K., Vögler, A., Katsukawa, Y., & Tsuneta, S., 2008, A&A, 484, 17 Google Scholar
Gadun, A. S., Hanslmeier, A., Pikalov, K. N., Ploner, S. R. O., Puschmann, K. G., & Solanki, S. K. 2000 A&AS, 146, 267 Google Scholar
Hirzberger, J., Vázquez, M., Bonet, J. A., Hanslmeier, A., & Sobotka, M. 1997 ApJ, 480, 406 CrossRefGoogle Scholar
Hirzberger, J., Bonet, J. A., Sobotka, M., Vázquez, M., & Hanslmeier, A. 2002 A&A, 383, 275 Google Scholar
Leka, K. D., Barnes, G., & Crouch, A. 2009 ASPC, 415, 365 Google Scholar
Lemmerer, B., Utz, D., Hanslmeier, A., Veronig, A., Thonhofer, S., Grimm-Strele, H., & Kariyappa, R. 2014 A&A, 563, 107 Google Scholar
Lemmerer, B., Hanslmeier, A., Muthsam, H., & Piantschitsch, 2016 arXiv, 2016arXiv161106786LGoogle Scholar
Lites, B. W., Low, B. C., Martinez Pillet, V., Seagraves, P., Skumanich, A., Frank, Z. A., Shine, R. A., & Tsuneta, S. 1995 ApJ, 446, 877 CrossRefGoogle Scholar
Narayan, G., & Scharmer, G. B. 2010 A&A, 524, 3 Google Scholar
Ortiz, A., Bellot Rubio, L. R., & Rouppe van der Voort, L. 2010 ApJ, 713, 1282 CrossRefGoogle Scholar
Rempel, M. 2011 ApJ, 740, 15 CrossRefGoogle Scholar
Roudier, T., & Muller, R. 1986 Solar Phys., 107, 11 CrossRefGoogle Scholar
Scharmer, G. B., Bjelksjo, K., Korhonen, T. K., Lindberg, B., & Petterson, B. 2003 SPIE, 4853, 341 Google Scholar
Scharmer, G. B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J., Löfdahl, M. G., Kiselman, D., Sütterlin, P., van Noort, M., & Lagg, A. 2008 ApJ, 689, 69 CrossRefGoogle Scholar
Schlichenmaier, R., Bello González, N., Rezaei, R., & Waldmann, T. A. 2010 AN, 331, 563 Google Scholar
Schüssler, M., & Vögler, A. 2006 ApJ, 641, 73 CrossRefGoogle Scholar
Tiwari, S. K., van Noort, M., Lagg, A., & Solanki, S. K. 2013 A&A, 557, 25 Google Scholar
van Noort, M., Rouppe van der Voort, L., & Löfdahl, M. G. 2005 Solar Phys., 228, 191 CrossRefGoogle Scholar
Woehl, H., & Nordlund, A. 1985 Solar Phys., 97, 213 CrossRefGoogle Scholar
Yu, D., Xie, Z., Hu, Q., Yang, S., Zhangm, J., & Wang, J. 2011 ApJ, 743, 58 CrossRefGoogle Scholar